2,240 research outputs found

    NCC Simulation Model: Simulating the operations of the network control center, phase 2

    Get PDF
    The simulation of the network control center (NCC) is in the second phase of development. This phase seeks to further develop the work performed in phase one. Phase one concentrated on the computer systems and interconnecting network. The focus of phase two will be the implementation of the network message dialogues and the resources controlled by the NCC. These resources are requested, initiated, monitored and analyzed via network messages. In the NCC network messages are presented in the form of packets that are routed across the network. These packets are generated, encoded, decoded and processed by the network host processors that generate and service the message traffic on the network that connects these hosts. As a result, the message traffic is used to characterize the work done by the NCC and the connected network. Phase one of the model development represented the NCC as a network of bi-directional single server queues and message generating sources. The generators represented the external segment processors. The served based queues represented the host processors. The NCC model consists of the internal and external processors which generate message traffic on the network that links these hosts. To fully realize the objective of phase two it is necessary to identify and model the processes in each internal processor. These processes live in the operating system of the internal host computers and handle tasks such as high speed message exchanging, ISN and NFE interface, event monitoring, network monitoring, and message logging. Inter process communication is achieved through the operating system facilities. The overall performance of the host is determined by its ability to service messages generated by both internal and external processors

    Changes in catch rates and length and age at maturity, but not growth, of an estuarine plotosid (Cnidoglanis macrocephalus) after heavy fishing

    Get PDF
    The hypothesis that heavy fishing pressure has led to changes in the biological characteristics of the estuary cobbler (Cnidoglanis macrocephalus) was tested in a large seasonally open estuary in southwestern Australia, where this species completes its life cycle and is the most valuable commercial fish species. Comparisons were made between seasonal data collected for this plotosid (eeltail catfish) in Wilson Inlet during 2005–08 and those recorded with the same fishery-independent sampling regime during 1987–89. These comparisons show that the proportions of larger and older individuals and the catch rates in the more recent period were far lower, i.e., they constituted reductions of 40% for fish ≥430 mm total length, 62% for fish ≥4 years of age, and 80% for catch rate. In addition, total mortality and fishing-induced mortality estimates increased by factors of ~2 and 2.5, respectively. The indications that the abundance and proportion of older C. macrocephalus declined between the two periods are consistent with the perception of long-term commercial fishermen and their shift toward using a smaller maximum gill net mesh to target this species. The sustained heavy fishing pressure on C. macrocephalus between 1987–89 and 2005–08 was accompanied by a marked reduction in length and age at maturity of this species. The shift in probabilistic maturation reaction norms toward smaller fish in 2005–08 and the lack of a conspicuous change in growth between the two periods indicate that the maturity changes were related to fishery-induced evolution rather than to compensatory responses to reduced fish densities

    NCC simulation model. Phase 2: Simulating the operations of the Network Control Center and NCC message manual

    Get PDF
    The network control center (NCC) provides scheduling, monitoring, and control of services to the NASA space network. The space network provides tracking and data acquisition services to many low-earth orbiting spacecraft. This report describes the second phase in the development of simulation models for the FCC. Phase one concentrated on the computer systems and interconnecting network.Phase two focuses on the implementation of the network message dialogs and the resources controlled by the NCC. Performance measures were developed along with selected indicators of the NCC's operational effectiveness.The NCC performance indicators were defined in terms of the following: (1) transfer rate, (2) network delay, (3) channel establishment time, (4) line turn around time, (5) availability, (6) reliability, (7) accuracy, (8) maintainability, and (9) security. An NCC internal and external message manual is appended to this report

    Sequential Electrostatic Assembly of a Polymer Surfactant Corona Increases Activity of the Phosphotriesterase arPTE

    Get PDF
    We present a new methodology for the generation of discrete molecularly dispersed enzyme–polymer–surfactant bioconjugates. Significantly, we demonstrate that >3-fold increase in the catalytic efficiency of the diffusion-limited phosphotriesterase arPTE can be achieved through sequential electrostatic addition of cationic and anionic polymer surfactants, respectively. Here, the polymer surfactants assemble on the surface of the enzyme via ion exchange to yield a compact corona. The observed rate enhancement is consistent with a mechanism whereby the polymer–surfactant corona gives rise to a decrease in the dielectric constant in the vicinity of the active site of the enzyme, accelerating the rate-determining product diffusion step. The facile methodology has significant potential for increasing the efficiency of enzymes and could therefore have a substantially positive impact for industrial enzymology

    Spontaneous Development of Full Weight-Supported Stepping after Complete Spinal Cord Transection in the Neonatal Opossum, Monodelphis domestica

    Get PDF
    Spinal cord trauma in the adult nervous system usually results in permanent loss of function below the injury level. The immature spinal cord has greater capacity for repair and can develop considerable functionality by adulthood. This study used the marsupial laboratory opossum Monodelphis domestica, which is born at a very early stage of neural development. Complete spinal cord transection was made in the lower-thoracic region of pups at postnatal-day 7 (P7) or P28, and the animals grew to adulthood. Injury at P7 resulted in a dense neuronal tissue bridge that connected the two ends of the cord; retrograde neuronal labelling indicated that supraspinal and propriospinal innervation spanned the injury site. This repair was associated with pronounced behavioural recovery, coordinated gait and an ability to use hindlimbs when swimming. Injury at P28 resulted in a cyst-like cavity encased in scar tissue forming at the injury site. Using retrograde labelling, no labelled brainstem or propriospinal neurons were found above the lesion, indicating that detectable neuronal connectivity had not spanned the injury site. However, these animals could use their hindlimbs to take weight-supporting steps but could not use their hindlimbs when swimming. White matter, demonstrated by Luxol Fast Blue staining, was present in the injury site of P7- but not P28-injured animals. Overall, these studies demonstrated that provided spinal injury occurs early in development, regrowth of supraspinal innervation is possible. This repair appears to lead to improved functional outcomes. At older ages, even without detectable axonal growth spanning the injury site, substantial development of locomotion was still possible. This outcome is discussed in conjunction with preliminary findings of differences in the local propriospinal circuits following spinal cord injury (demonstrated with fluororuby labelling), which may underlie the weight bearing locomotion observed in the apparent absence of axons bridging the lesion site in P28-injured Monodelphis

    A WFC3 Grism Emission Line Redshift Catalog in the GOODS-South Field

    Get PDF
    We combine HST/WFC3 imaging and G141 grism observations from the CANDELS and 3D-HST surveys to produce a catalog of grism spectroscopic redshifts for galaxies in the CANDELS/GOODS-South field. The WFC3/G141 grism spectra cover a wavelength range of 1.1<lambda<1.7 microns with a resolving power of R~130 for point sources, thus providing rest-frame optical spectra for galaxies out to z~3.5. The catalog is selected in the H-band (F160W) and includes both galaxies with and without previously published spectroscopic redshifts. Grism spectra are extracted for all H-band detected galaxies with H<24 and a CANDELS photometric redshift z_phot > 0.6. The resulting spectra are visually inspected to identify emission lines and redshifts are determined using cross-correlation with empirical spectral templates. To establish the accuracy of our redshifts, we compare our results against high-quality spectroscopic redshifts from the literature. Using a sample of 411 control galaxies, this analysis yields a precision of sigma_NMAD=0.0028 for the grism-derived redshifts, which is consistent with the accuracy reported by the 3D-HST team. Our final catalog covers an area of 153 square arcmin and contains 1019 redshifts for galaxies in GOODS-S. Roughly 60% (608/1019) of these redshifts are for galaxies with no previously published spectroscopic redshift. These new redshifts span a range of 0.677 < z < 3.456 and have a median redshift of z=1.282. The catalog contains a total of 234 new redshifts for galaxies at z>1.5. In addition, we present 20 galaxy pair candidates identified for the first time using the grism redshifts in our catalog, including four new galaxy pairs at z~2, nearly doubling the number of such pairs previously identified.Comment: 25 Pages, 9 Figures, submitted to A

    Smooth(er) Stellar Mass Maps in CANDELS: Constraints on the Longevity of Clumps in High-redshift Star-forming Galaxies

    Get PDF
    We perform a detailed analysis of the resolved colors and stellar populations of a complete sample of 323 star-forming galaxies at 0.5 < z < 1.5, and 326 star-forming galaxies at 1.5 < z < 2.5 in the ERS and CANDELS-Deep region of GOODS-South. Galaxies were selected to be more massive than 10^10 Msun and have specific star formation rates above 1/t_H. We model the 7-band optical ACS + near-IR WFC3 spectral energy distributions of individual bins of pixels, accounting simultaneously for the galaxy-integrated photometric constraints available over a longer wavelength range. We analyze variations in rest-frame color, stellar surface mass density, age, and extinction as a function of galactocentric radius and local surface brightness/density, and measure structural parameters on luminosity and stellar mass maps. We find evidence for redder colors, older stellar ages, and increased dust extinction in the nuclei of galaxies. Big star-forming clumps seen in star formation tracers are less prominent or even invisible on the inferred stellar mass distributions. Off-center clumps contribute up to ~20% to the integrated SFR, but only 7% or less to the integrated mass of all massive star-forming galaxies at z ~ 1 and z ~ 2, with the fractional contributions being a decreasing function of wavelength used to select the clumps. The stellar mass profiles tend to have smaller sizes and M20 coefficients, and higher concentration and Gini coefficients than the light distribution. Our results are consistent with an inside-out disk growth scenario with brief (100 - 200 Myr) episodic local enhancements in star formation superposed on the underlying disk. Alternatively, the young ages of off-center clumps may signal inward clump migration, provided this happens efficiently on the order of an orbital timescale.Comment: Accepted by The Astrophysical Journal, 27 pages, 1 table, 16 figure

    No More Active Galactic Nuclei in Clumpy Disks Than in Smooth Galaxies at z~2 in CANDELS / 3D-HST

    Get PDF
    We use CANDELS imaging, 3D-HST spectroscopy, and Chandra X-ray data to investigate if active galactic nuclei (AGNs) are preferentially fueled by violent disk instabilities funneling gas into galaxy centers at 1.3<z<2.4. We select galaxies undergoing gravitational instabilities using the number of clumps and degree of patchiness as proxies. The CANDELS visual classification system is used to identify 44 clumpy disk galaxies, along with mass-matched comparison samples of smooth and intermediate morphology galaxies. We note that, despite being being mass-matched and having similar star formation rates, the smoother galaxies tend to be smaller disks with more prominent bulges compared to the clumpy galaxies. The lack of smooth extended disks is probably a general feature of the z~2 galaxy population, and means we cannot directly compare with the clumpy and smooth extended disks observed at lower redshift. We find that z~2 clumpy galaxies have slightly enhanced AGN fractions selected by integrated line ratios (in the mass-excitation method), but the spatially resolved line ratios indicate this is likely due to extended phenomena rather than nuclear AGNs. Meanwhile the X-ray data show that clumpy, smooth, and intermediate galaxies have nearly indistinguishable AGN fractions derived from both individual detections and stacked non-detections. The data demonstrate that AGN fueling modes at z~1.85 - whether violent disk instabilities or secular processes - are as efficient in smooth galaxies as they are in clumpy galaxies.Comment: ApJ accepted. 17 pages, 17 figure
    • …
    corecore