245 research outputs found

    Association between arterial stiffness and variations in estrogen-related genes

    Get PDF
    available in PMC 2010 April 1.Increased arterial stiffness and wave reflection have been identified as cardiovascular disease risk factors. In light of significant sex differences and the moderate heritability of vascular function measures, we hypothesized that variation in the genes coding for oestrogen receptors α (ESR1) and β (ESR2) and aromatase (CYP19A1) is associated with aortic stiffness and pressure wave reflection as measured by non-invasive arterial tonometry. In all, 1261 unrelated Framingham Offspring Study participants who attended the seventh examination cycle (mean age 62±10 years, 52% women) and had arterial tonometry and genotyping data were included in the study. Analysis of covariance was used to assess the association of polymorphisms with forward wave amplitude, augmented pressure, augmentation index (AI), carotid–femoral pulse wave velocity and mean arterial pressure with adjustment for potential confounders. In the sex-pooled analysis, those homozygous for the minor allele at any of four ESR1 variants that were in strong linkage disequilibrium ((TA)n, rs2077647, rs2234693 and rs9340799) had on an average 18% higher augmented pressure and 16% greater AI compared with carriers of one or two major alleles (P=0.0002–0.01). A similar magnitude of association was detected in those homozygous for the common allele at two ESR2 single-nucleotide polymorphisms (P=0.007–0.02). Our results are consistent with the hypothesis that variation in ESR1 and ESR2, but not CYP19A1, is associated with an increased wave reflection that may contribute to associations between these variants and adverse clinical events demonstrated earlier. Our findings will need to be replicated in additional cohorts

    Micro RNAs from DNA Viruses are Found Widely in Plasma in a Large Observational Human Population

    Get PDF
    Viral infections associate with disease risk and select families of viruses encode miRNAs that control an efficient viral cycle. The association of viral miRNA expression with disease in a large human population has not been previously explored. We sequenced plasma RNA from 40 participants of the Framingham Heart Study (FHS, Offspring Cohort, Visit 8) and identified 3 viral miRNAs from 3 different human Herpesviridae. These miRNAs were mostly related to viral latency and have not been previously detected in human plasma. Viral miRNA expression was then screened in the plasma of 2763 participants of the remaining cohort utilizing high-throughput RT-qPCR. All 3 viral miRNAs associated with combinations of inflammatory or prothrombotic circulating biomarkers (sTNFRII, IL-6, sICAM1, OPG, P-selectin) but did not associate with hypertension, coronary heart disease or cancer. Using a large observational population, we demonstrate that the presence of select viral miRNAs in the human circulation associate with inflammatory biomarkers and possibly immune response, but fail to associate with overt disease. This study greatly extends smaller singular observations of viral miRNAs in the human circulation and suggests that select viral miRNAs, such as those for latency, may not impact disease manifestation

    Specific Inflammatory Stimuli Lead to Distinct Platelet Responses in Mice and Humans

    Get PDF
    INTRODUCTION: Diverse and multi-factorial processes contribute to the progression of cardiovascular disease. These processes affect cells involved in the development of this disease in varying ways, ultimately leading to atherothrombosis. The goal of our study was to compare the differential effects of specific stimuli - two bacterial infections and a Western diet - on platelet responses in ApoE-/- mice, specifically examining inflammatory function and gene expression. Results from murine studies were verified using platelets from participants of the Framingham Heart Study (FHS; n = 1819 participants). METHODS: Blood and spleen samples were collected at weeks 1 and 9 from ApoE-/- mice infected with Porphyromonas gingivalis or Chlamydia pneumoniae and from mice fed a Western diet for 9 weeks. Transcripts based on data from a Western diet in ApoE-/- mice were measured in platelet samples from FHS using high throughput qRT-PCR. RESULTS:At week 1, both bacterial infections increased circulating platelet-neutrophil aggregates. At week 9, these cells individually localized to the spleen, while Western diet resulted in increased platelet-neutrophil aggregates in the spleen only. Microarray analysis of platelet RNA from infected or Western diet-fed mice at week 1 and 9 showed differential profiles. Genes, such as Serpina1a, Ttr, Fgg, Rpl21, and Alb, were uniquely affected by infection and diet. Results were reinforced in platelets obtained from participants of the FHS. CONCLUSION: Using both human studies and animal models, results demonstrate that variable sources of inflammatory stimuli have the ability to influence the platelet phenotype in distinct ways, indicative of the diverse function of platelets in thrombosis, hemostasis, and immunity

    Plasma microRNAs are Associated with Atrial Fibrillation (the miRhythm Study) and Change After Catheter-ablation

    Get PDF
    Background: Atrial fibrillation (AF) is the most common dysrhythmia in the U.S. and Europe. Few biomarkers exist to identify individuals at risk for AF. Cardiac microRNAs (miRNAs) have been implicated in susceptibility to AF and are detectable in the circulation. Nevertheless, data are limited on how circulating levels of miRNAs relate to AF or change over time after catheter- ablation. Methods: In 211 miRhythm participants (112 with paroxysmal or persistent AF; 99 without AF), we quantified plasma expression of 86 miRNAs associated with cardiac remodeling or disease by high-throughput quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). We used qRT-PCR to examine change in plasma miRNA expression from baseline to 1-month after ablation in 47 participants. We also quantified expression of the 20 most variable miRNAs in atrial tissue in 31 participants undergoing cardiac surgery. Results: The mean age of the miRhythm cohort was 59 years and 58% of participants were men. 21 miRNAs differed significantly between participants with AF and those with no AF in regression models adjusting for known AF risk factors (p value of ≤ 0.0006). Several miRNAs associated with AF, including miR-21, miR-29a, miR-122, miR-150, miR-320, and miR-92a, regulate expression of genes implicated in the pathogenesis of AF. Levels of 33 miRNAs, including 14 associated with AF, changed significantly between baseline and 1-month after catheter ablation (p value of ≤ 0.0006). Although all AF-related plasma miRNAs were expressed in atrial tissue, only miR-21 and miR-411 differed significantly with respect to preoperative AF status. Conclusions: Plasma levels of miRNAs associated with heart disease and cardiac remodeling were related to AF and changed after catheter-ablation. Our study suggests that AF has a unique circulating miRNA profile and that this profile is influenced by catheter-ablation

    Comparison of On-Site Versus Remote Mobile Device Support in the Framingham Heart Study Using the Health eHeart Study for Digital Follow-up: Randomized Pilot Study Set Within an Observational Study Design

    Get PDF
    BACKGROUND: New electronic cohort (e-Cohort) study designs provide resource-effective methods for collecting participant data. It is unclear if implementing an e-Cohort study without direct, in-person participant contact can achieve successful participation rates. OBJECTIVE: The objective of this study was to compare 2 distinct enrollment methods for setting up mobile health (mHealth) devices and to assess the ongoing adherence to device use in an e-Cohort pilot study. METHODS: We coenrolled participants from the Framingham Heart Study (FHS) into the FHS-Health eHeart (HeH) pilot study, a digital cohort with infrastructure for collecting mHealth data. FHS participants who had an email address and smartphone were randomized to our FHS-HeH pilot study into 1 of 2 study arms: remote versus on-site support. We oversampled older adults (age \u3e /=65 years), with a target of enrolling 20% of our sample as older adults. In the remote arm, participants received an email containing a link to enrollment website and, upon enrollment, were sent 4 smartphone-connectable sensor devices. Participants in the on-site arm were invited to visit an in-person FHS facility and were provided in-person support for enrollment and connecting the devices. Device data were tracked for at least 5 months. RESULTS: Compared with the individuals who declined, individuals who consented to our pilot study (on-site, n=101; remote, n=93) were more likely to be women, highly educated, and younger. In the on-site arm, the connection and initial use of devices was \u3e /=20% higher than the remote arm (mean percent difference was 25% [95% CI 17-35] for activity monitor, 22% [95% CI 12-32] for blood pressure cuff, 20% [95% CI 10-30] for scale, and 43% [95% CI 30-55] for electrocardiogram), with device connection rates in the on-site arm of 99%, 95%, 95%, and 84%. Once connected, continued device use over the 5-month study period was similar between the study arms. CONCLUSIONS: Our pilot study demonstrated that the deployment of mobile devices among middle-aged and older adults in the context of an on-site clinic visit was associated with higher initial rates of device use as compared with offering only remote support. Once connected, the device use was similar in both groups

    Future Directions for Cardiovascular Disease Comparative Effectiveness Research Report of a Workshop Sponsored by the National Heart, Lung, and Blood Institute

    Get PDF
    Comparative effectiveness research (CER) aims to provide decision makers with the evidence needed to evaluate the benefits and harms of alternative clinical management strategies. CER has become a national priority, with considerable new research funding allocated. Cardiovascular disease is a priority area for CER. This workshop report provides an overview of CER methods, with an emphasis on practical clinical trials and observational treatment comparisons. The report also details recommendations to the National Heart, Lung, and Blood Institute for a new framework for evidence development to foster cardiovascular CER, and specific studies to address 8 clinical issues identified by the Institute of Medicine as high priorities for cardiovascular CER

    Metabolomic Profiling in Relation to New-Onset Atrial Fibrillation (from the Framingham Heart Study)

    Get PDF
    Previous studies have shown several metabolic biomarkers to be associated with prevalent and incident atrial fibrillation (AF), but the results have not been replicated. We investigated metabolite profiles of 2,458 European ancestry participants from the Framingham Heart Study without AF at the index examination and followed them for 10 years for new-onset AF. Amino acids, organic acids, lipids, and other plasma metabolites were profiled by liquid chromatography–tandem mass spectrometry using fasting plasma samples. We conducted Cox proportional hazard analyses for association between metabolites and new-onset AF. We performed hypothesis-generating analysis to identify novel metabolites and hypothesis-testing analysis to confirm the previously reported associations between metabolites and AF. Mean age was 55.1 ± 9.9 years, and 53% were women. Incident AF developed in 156 participants (6.3%) in 10 years of follow-up. A total of 217 metabolites were examined, consisting of 54 positively charged metabolites, 59 negatively charged metabolites, and 104 lipids. None of the 217 metabolites met our a priori specified Bonferroni corrected level of significance in the multivariate analyses. We were unable to replicate previous results demonstrating associations between metabolites that we had measured and AF. In conclusion, in our metabolomics approach, none of the metabolites we tested were significantly associated with the risk of future AF

    Genetic risk prediction of atrial fibrillation

    Get PDF
    Background—Atrial fibrillation (AF) has a substantial genetic basis. Identification of individuals at greatest AF risk could minimize the incidence of cardioembolic stroke. Methods—To determine whether genetic data can stratify risk for development of AF, we examined associations between AF genetic risk scores and incident AF in five prospective studies comprising 18,919 individuals of European ancestry. We examined associations between AF genetic risk scores and ischemic stroke in a separate study of 509 ischemic stroke cases (202 cardioembolic [40%]) and 3,028 referents. Scores were based on 11 to 719 common variants (≥5%) associated with AF at P-values ranging from <1x10-3 to <1x10-8 in a prior independent genetic association study. Results—Incident AF occurred in 1,032 (5.5%) individuals. AF genetic risk scores were associated with new-onset AF after adjusting for clinical risk factors. The pooled hazard ratio for incident AF for the highest versus lowest quartile of genetic risk scores ranged from 1.28 (719 variants; 95%CI, 1.13-1.46; P=1.5x10-4) to 1.67 (25 variants; 95%CI, 1.47-1.90; P=9.3x10-15). Discrimination of combined clinical and genetic risk scores varied across studies and scores (maximum C statistic, 0.629-0.811; maximum ΔC statistic from clinical score alone, 0.009-0.017). AF genetic risk was associated with stroke in age- and sex-adjusted models. For example, individuals in the highest versus lowest quartile of a 127-variant score had a 2.49-fold increased odds of cardioembolic stroke (95%CI, 1.39-4.58; P=2.7x10-3). The effect persisted after excluding individuals (n=70) with known AF (odds ratio, 2.25; 95%CI, 1.20-4.40; P=0.01). Conclusions—Comprehensive AF genetic risk scores were associated with incident AF beyond associations for clinical AF risk factors, though offered small improvements in discrimination. AF genetic risk was also associated with cardioembolic stroke in age- and sex-adjusted analyses. Efforts are warranted to determine whether AF genetic risk may improve identification of subclinical AF or help distinguish between stroke mechanisms

    Association of Cardiometabolic Disease With Cancer in the Community

    Get PDF
    BACKGROUND: Obesity and cardiometabolic dysfunction have been associated with cancer risk and severity. Underlying mechanisms remain unclear. OBJECTIVES: The aim of this study was to examine associations of obesity and related cardiometabolic traits with incident cancer. METHODS: FHS (Framingham Heart Study) and PREVEND (Prevention of Renal and Vascular End-Stage Disease) study participants without prevalent cancer were studied, examining associations of obesity, body mass index (BMI), waist circumference, visceral adipose tissue (VAT) and subcutaneous adipose tissue depots, and C-reactive protein (CRP) with future cancer in Cox models. RESULTS: Among 20,667 participants (mean age 50 years, 53% women), 2,619 cancer events were observed over a median follow-up duration of 15 years. Obesity was associated with increased risk for future gastrointestinal (HR: 1.30; 95% CI: 1.05-1.60), gynecologic (HR: 1.62; 95% CI: 1.08-2.45), and breast (HR: 1.32; 95% CI: 1.05-1.66) cancer and lower risk for lung cancer (HR: 0.62; 95% CI: 0.44-0.87). Similarly, waist circumference was associated with increased risk for overall, gastrointestinal, and gynecologic but not lung cancer. VAT but not subcutaneous adipose tissue was associated with risk for overall cancer (HR: 1.22; 95% CI: 1.05-1.43), lung cancer (HR: 1.92; 95% CI: 1.01-3.66), and melanoma (HR: 1.56; 95% CI: 1.02-2.38) independent of BMI. Last, higher CRP levels were associated with higher risk for overall, colorectal, and lung cancer (P < 0.05 for all). CONCLUSIONS: Obesity and abdominal adiposity are associated with future risk for specific cancers (eg, gastrointestinal, gynecologic). Although obesity was associated with lower risk for lung cancer, greater VAT and CRP were associated with higher lung cancer risk after adjusting for BMI

    Advancing Research on the Complex Interrelations Between Atrial Fibrillation and Heart Failure A Report From a US National Heart, Lung, and Blood Institute Virtual Workshop

    Get PDF
    The interrelationships between atrial fibrillation (AF) and heart failure (HF) are complex and poorly understood, yet the number of patients with AF and HF continues to increase worldwide. Thus, there is a need for initiatives that prioritize research on the intersection between AF and HF. This article summarizes the proceedings of a virtual workshop convened by the US National Heart, Lung, and Blood Institute to identify important research opportunities in AF and HF. Key knowledge gaps were reviewed and research priorities were proposed for characterizing the pathophysiological overlap and deleterious interactions between AF and HF; preventing HF in people with AF; preventing AF in individuals with HF; and addressing symptom burden and health status outcomes in AF and HF. These research priorities will hopefully help inform, encourage, and stimulate innovative, cost-efficient, and transformative studies to enhance the outcomes of patients with AF and HF
    • …
    corecore