62 research outputs found

    Optimising the training-induced changes of inhibitory control

    Get PDF
    In four studies, this thesis examined the effect of task difficulty and brief training on inhibitory processing in the Go/Nogo task, and transfer to the Stop-signal and Eriksenflanker tasks. It also aimed to clarify how the event-related potential (ERP) of the N2 and P3, as well as the earlier N1 and P2 components, reflect training-related modulations in the underlying neural processes. This was achieved by (1) the use of three task difficulty levels (Low, Medium, High) using incremental reaction time deadlines (RTDs), (2) the effect of these three RTDs on task performance and the early (N1, P2) and inhibition-related (N2, P3) ERP components after brief training, (3) the use of another form of task difficulty – stimulus prepotency – to investigate whether training effects may be enhanced, and (4) the use of single Go/Nogo training (planned inhibition) vs. combined training of Go/Nogo (planned inhibition) and Stop-signal (action cancellation) inhibition. The main results were that the Nogo N2 effect was robustly observed to increase with greater task difficulty (i.e. RTDs), but that it reduced irrespective with time-on-task or training condition. It does not appear to reflect neural processing related to motor or pre-motor inhibition, but may instead represent the detection of conflict between responses. The Nogo P3, however, behaved in a fashion consistent with an inhibitory interpretation, being reduced with greater task difficulty (concurrent with lower levels of task performance), but showing increased amplitudes over frontal brain regions with training and improved task performance – an effect that showed near-transfer to an untrained Stop-signal task. Reduced N1, but enhanced P2 amplitudes, occurred regardless of training condition, indicating a generalised change in sensory processing with repeated task administration. The results cast doubt on the current inhibitory interpretation of the N2. Instead they suggest that, not only does the amplitude of the frontocentral Nogo P3 represent neural processing related to inhibitory control, but that it shows clear training-induced quantitative changes coinciding with performance improvements - furthering both the theoretical and applied knowledge of the key task parameters required to effectively train inhibitory control

    Investigating predictive coding in younger and older children using MEG and a multi-feature auditory oddball paradigm

    Get PDF
    There is mounting evidence for predictive coding theory from computational, neuroimaging, and psychological research. However, there remains a lack of research exploring how predictive brain function develops across childhood. To address this gap, we used pediatric magnetoencephalography to record the evoked magnetic fields of 18 younger children (M = 4.1 years) and 19 older children (M = 6.2 years) as they listened to a 12-min auditory oddball paradigm. For each child, we computed a mismatch field "MMF": an electrophysiological component that is widely interpreted as a neural signature of predictive coding. At the sensor level, the older children showed significantly larger MMF amplitudes relative to the younger children. At the source level, the older children showed a significantly larger MMF amplitude in the right inferior frontal gyrus relative to the younger children, P < 0.05. No differences were found in 2 other key regions (right primary auditory cortex and right superior temporal gyrus) thought to be involved in mismatch generation. These findings support the idea that predictive brain function develops during childhood, with increasing involvement of the frontal cortex in response to prediction errors. These findings contribute to a deeper understanding of the brain function underpinning child cognitive development

    Studying Brain Function in Children Using Magnetoencephalography

    Get PDF
    Magnetoencephalography (MEG) is a non-invasive neuroimaging technique which directly measures magnetic fields produced by the electrical activity of the human brain. MEG is quiet and less likely to induce claustrophobia compared with magnetic resonance imaging (MRI). It is therefore a promising tool for investigating brain function in young children. However, analysis of MEG data from pediatric populations is often complicated by head movement artefacts which arise as a consequence of the requirement for a spatially-fixed sensor array that is not affixed to the child's head. Minimizing head movements during MEG sessions can be particularly challenging as young children are often unable to remain still during experimental tasks. The protocol presented here aims to reduce head movement artefacts during pediatric MEG scanning. Prior to visiting the MEG laboratory, families are provided with resources that explain the MEG system and the experimental procedures in simple, accessible language. An MEG familiarization session is conducted during which children are acquainted with both the researchers and the MEG procedures. They are then trained to keep their head still whilst lying inside an MEG simulator. To help children feel at ease in the novel MEG environment, all of the procedures are explained through the narrative of a space mission. To minimize head movement due to restlessness, children are trained and assessed using fun and engaging experimental paradigms. In addition, children's residual head movement artefacts are compensated for during the data acquisition session using a real-time head movement tracking system. Implementing these child-friendly procedures is important for improving data quality, minimizing participant attrition rates in longitudinal studies, and ensuring that families have a positive research experience

    The role of configurality in the Thatcher illusion: an ERP study.

    Get PDF
    The Thatcher illusion (Thompson in Perception, 9, 483-484, 1980) is often explained as resulting from recognising a distortion of configural information when 'Thatcherised' faces are upright but not when inverted. However, recent behavioural studies suggest that there is an absence of perceptual configurality in upright Thatcherised faces (Donnelly et al. in Attention, Perception & Psychophysics, 74, 1475-1487, 2012) and both perceptual and decisional sources of configurality in behavioural tasks with Thatcherised stimuli (Mestry, Menneer et al. in Frontiers in Psychology, 3, 456, 2012). To examine sources linked to the behavioural experience of the illusion, we studied inversion and Thatcherisation of faces (comparing across conditions in which no features, the eyes, the mouth, or both features were Thatcherised) on a set of event-related potential (ERP) components. Effects of inversion were found at the N170, P2 and P3b. Effects of eye condition were restricted to the N170 generated in the right hemisphere. Critically, an interaction of orientation and eye Thatcherisation was found for the P3b amplitude. Results from an individual with acquired prosopagnosia who can discriminate Thatcherised from typical faces but cannot categorise them or perceive the illusion (Mestry, Donnelly et al. in Neuropsychologia, 50, 3410-3418, 2012) only differed from typical participants at the P3b component. Findings suggest the P3b links most directly to the experience of the illusion. Overall, the study showed evidence consistent with both perceptual and decisional sources and the need to consider both in relation to configurality
    • 

    corecore