804 research outputs found
Dual Fabry-Perot filter for measurement of CO rotational spectra: design and application to the CO spectrum of Venus
We present the design of a harmonic resonant filter that can be used with a Fourier transform spectrometer (FTS) for simultaneous measurement of a series of lines in the CO rotational ladder. To enable studies of both broad CO absorptions in Venus and modestly red-shifted CO emission from external galaxies, relatively broad (approximately 10-30-GHz FWHM) transmission passbands are desirable. Because a single low-finesse Fabry Perot (FP) etalon has insufficient interline rejection, a dual-FP etalon was considered. Such a design provides significantly better interband rejection and somewhat more flattopped transmission spikes. A prototype filter of this type, made of two thin silicon disks spaced by an air gap, has been constructed and used with our FTS at the Caltech Submillimeter Observatory for simultaneous measurement of the four submillimeter CO transitions in the atmosphere of Venus that are accessible from the ground
Bipolar molecular outflows driven by hydromagnetic protostellar winds
We demonstrate that magnetically-collimated protostellar winds will sweep
ambient material into thin, radiative, momentum-conserving shells whose
features reproduce those commonly observed in bipolar molecular outflows. We
find the typical position-velocity and mass-velocity relations to occur in
outflows in a wide variety of ambient density distributions, regardless of the
time histories of their driving winds.Comment: 4 pages, 1 figure, submitted to ApJ
Wide-field Infrared Survey Explorer Observations of the Evolution of Massive Star-forming Regions
We present the results of a mid-infrared survey of 11 outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from the first burst of massive star formation with the molecular cloud material leftover from that earlier generation of stars. We dub this process the "fireworks hypothesis" since star formation by this mechanism would proceed rapidly and resemble a burst of fireworks. We have also analyzed small cutout WISE images of the structures around the edges of these massive star-forming regions. We observe large (1-3 pc size) pillar and trunk-like structures of diffuse emission nebulosity tracing excited polycyclic aromatic hydrocarbon molecules and small dust grains at the perimeter of the massive star-forming regions. These structures contain small clusters of emerging Class I and Class II sources, but some are forming only a single to a few new stars
Sensitive Radio Observations of High Redshift Dusty QSOs
We present sensitive radio continuum imaging at 1.4 GHz and 4.9 GHz of seven
high redshift QSOs selected for having a 240 GHz continuum detection, which is
thought to be thermal dust emission. We detect radio continuum emission from
four of the sources: BRI 0952-0115, BR 1202-0725, LBQS 1230+1627B, and BRI
1335-0417. The radio source in BR 1202-0725 is resolved into two components,
coincident with the double mm and CO sources. We compare the results at 1.4 GHz
and 240 GHz to empirical and semi-analytic spectral models based on star
forming galaxies at low redshift. The radio-to-submm spectral energy
distribution for BR 1202-0725, LBQS 1230+1627B, and BRI 1335-0417 are
consistent with that expected for a massive starburst galaxy, with implied
massive star formation rates of order 1000 solar masses per year (without
correcting for possible amplification by gravitational lensing). The
radio-to-submm spectral energy distribution for BRI 0952-0115 suggests a
low-luminosity radio jet source driven by the AGN.Comment: 12 pages, Latex emulateapj format, including 1 table and 3 figures.
The Astrophysical Journal, to appear in the January 2000 issu
Submillimeter Imaging of NGC 891 with SHARC
The advent of submillimeter wavelength array cameras operating on large
ground-based telescopes is revolutionizing imaging at these wavelengths,
enabling high-resolution submillimeter surveys of dust emission in star-forming
regions and galaxies. Here we present a recent 350 micron image of the edge-on
galaxy NGC 891, which was obtained with the Submillimeter High Angular
Resolution Camera (SHARC) at the Caltech Submillimeter Observatory (CSO). We
find that high resolution submillimeter data is a vital complement to shorter
wavelength satellite data, which enables a reliable separation of the cold dust
component seen at millimeter wavelengths from the warmer component which
dominates the far-infrared (FIR) luminosity.Comment: 4 pages LaTeX, 2 EPS figures, with PASPconf.sty; to appear in
"Astrophysics with Infrared Surveys: A Prelude to SIRTF
The X-ray jet in the Crab Nebula: radical implications for pulsar theory?
The recent Chandra image of the Crab nebula shows a striking, axisymmetric
polar jet. It is shown that jets are formed in axisymmetric, magnetized pulsar
winds and that the jet luminosity scales relative to the total as
(\gamma_0\sigma_{eq})^{-4/3}, where \sigma_{eq} is the ratio of Poynting flux
to particle kinetic energy output at the equator at the base of the flow and
\gamma_0 the initial Lorentz factor of the flow. The results are applied to the
image of the Crab nebula, and the limit is set for the Crab pulsar of
\sigma_{eq} \leq 100. It is argued that conventional pulsar theory needs to be
reexamined in light of these limits.Comment: 13 page
350 Micron Dust Emission from High Redshift Objects
We report observations of a sample of high redshift sources (1.8<z<4.7),
mainly radio-quiet quasars, at 350 microns using the SHARC bolometer camera at
the Caltech Submillimeter Observatory. Nine sources were detected (>4-sigma)
and upper limits were obtained for 11 with 350 micron flux density limits
(3-sigma) in the range 30-125mJy. Combining published results at other
far-infrared and millimeter wavelengths with the present data, we are able to
estimate the temperature of the dust, finding relatively low values, averaging
50K. From the spectral energy distribution, we derive dust masses of a few 10^8
M_sun and luminosities of 4-33x10^{12} L_sun (uncorrected for any
magnification) implying substantial star formation activity. Thus both the
temperature and dust masses are not very different from those of local
ultraluminous infrared galaxies. For this redshift range, the 350 micron
observations trace the 60-100 micron rest frame emission and are thus directly
comparable with IRAS studies of low redshift galaxies.Comment: 5 pages, 2 PS figures. Accepted for publication in Astrophysical
Journal Letter
Monolithic Si bolometer array for the Caltech Submillimeter Observatory
We are developing a submillimeter continuum camera for the Caltech Submillimeter Observatory (CSO) located on Mauna Kea. The camera will employ a monolithic Si bolometer array which was developed by Mosley et al. at the NASA Goddard Space Flight Center (GSFC). The camera will be cooled to a temperature of about 300 mK in a ^3He cryostat, and will operate primarily at wavelengths of 350 and 450 micrometers. We plan to use a bolometer array with 1 x 24 directly illuminated pixels, each pixel of dimension 1 x 2 mm^2, which is about half of the F/4 beam size at these wavelengths. Each pixel is 10 - 12 micrometers thick and is supported only by four thin Si legs formed by wet chemical etch. The pixels are doped n-type by phosphorus implantation, compensated by boron implantation. Signals from the bolometer pixels are first amplified by cryogenically cooled FETs. The signals are further amplified by room-temperature amplifiers and then separately digitized by 16 bit A/D converters with differential inputs. The outputs of the A/D converters are fed into a digital signal processing board via fiber-optic cables. The electronics and data acquisition system were designed by the Goddard group. We will report the status of this effort
Jet Collimation by Small-Scale Magnetic Fields
A popular model for jet collimation is associated with the presence of a
large-scale and predominantly toroidal magnetic field originating from the
central engine (a star, a black hole, or an accretion disk). Besides the
problem of how such a large-scale magnetic field is generated, in this model
the jet suffers from the fatal long-wave mode kink magnetohydrodynamic
instability. In this paper we explore an alternative model: jet collimation by
small-scale magnetic fields. These magnetic fields are assumed to be local,
chaotic, tangled, but are dominated by toroidal components. Just as in the case
of a large-scale toroidal magnetic field, we show that the ``hoop stress'' of
the tangled toroidal magnetic fields exerts an inward force which confines and
collimates the jet. The magnetic ``hoop stress'' is balanced either by the gas
pressure of the jet, or by the centrifugal force if the jet is spinning. Since
the length-scale of the magnetic field is small (< the cross-sectional radius
of the jet << the length of the jet), in this model the jet does not suffer
from the long-wave mode kink instability. Many other problems associated with
the large-scale magnetic field are also eliminated or alleviated for
small-scale magnetic fields. Though it remains an open question how to generate
and maintain the required small-scale magnetic fields in a jet, the scenario of
jet collimation by small-scale magnetic fields is favored by the current study
on disk dynamo which indicates that small-scale magnetic fields are much easier
to generate than large-scale magnetic fields.Comment: 14 pages, no figur
- âŠ