857 research outputs found

    Vibronic effects on resonant electron conduction through single molecule junctions

    Full text link
    The influence of vibrational motion on electron conduction through single molecules bound to metal electrodes is investigated employing first-principles electronic-structure calculations and projection-operator Green's function methods. Considering molecular junctions where a central phenyl ring is coupled via (alkane)thiol-bridges to gold electrodes, it is shown that -- depending on the distance between the electronic π\pi-system and the metal -- electronic-vibrational coupling may result in pronounced vibrational substructures in the transmittance, a significantly reduced current as well as a quenching of negative differential resistance effects.Comment: Submitted to Chem. Phys. Lett. (13 pages, 5 figures) this version: typos and formating correcte

    Collision cross sections of high-mannose N-glycans in commonly observed adduct states – identification of gas-phase conformers unique to [M − H]<sup>-</sup> ions

    Get PDF
    We report collision cross sections (CCS) of high-mannose N-glycans as [M + Na]+, [M + K]+, [M + H]+, [M + Cl]-, [M + H2PO4]- and [M − H]- ions, measured by drift tube (DT) ion mobility-mass spectrometry (IM-MS) in helium and nitrogen gases. Further analysis using traveling wave (TW) IM-MS reveal the existence of distinct conformers exclusive to [M − H]- ions

    Correlation of a solar flare with a visual aurora

    Get PDF
    Correlation of solar flare with visual auror

    Was COVID-19 associated with worsening inequities in stroke treatment and outcomes?

    Get PDF
    Background COVID-19 stressed hospitals and may have disproportionately affected the stroke outcomes and treatment of Black and Hispanic individuals. Methods and Results This retrospective study used 100% Medicare Provider Analysis and Review file data from between 2016 and 2020. We used interrupted time series analyses to examine whether the COVID-19 pandemic exacerbated disparities in stroke outcomes and reperfusion therapy. Among 1 142 560 hospitalizations for acute ischemic strokes, 90 912 (8.0%) were Hispanic individuals; 162 752 (14.2%) were non-Hispanic Black individuals; and 888 896 (77.8%) were non-Hispanic White individuals. The adjusted odds of mortality increased by 51% (adjusted odds ratio [aOR], 1.51 [95% CI, 1.34-1.69]

    Precision Electron-Beam Polarimetry using Compton Scattering at 1 GeV

    Get PDF
    We report on the highest precision yet achieved in the measurement of the polarization of a low energy, O\mathcal{O}(1 GeV), electron beam, accomplished using a new polarimeter based on electron-photon scattering, in Hall~C at Jefferson Lab. A number of technical innovations were necessary, including a novel method for precise control of the laser polarization in a cavity and a novel diamond micro-strip detector which was able to capture most of the spectrum of scattered electrons. The data analysis technique exploited track finding, the high granularity of the detector and its large acceptance. The polarization of the 180 μ180~\muA, 1.161.16~GeV electron beam was measured with a statistical precision of <<~1\% per hour and a systematic uncertainty of 0.59\%. This exceeds the level of precision required by the \qweak experiment, a measurement of the vector weak charge of the proton. Proposed future low-energy experiments require polarization uncertainty <<~0.4\%, and this result represents an important demonstration of that possibility. This measurement is also the first use of diamond detectors for particle tracking in an experiment.Comment: 9 pages, 7 figures, published in PR

    Strange Quark Contributions to Parity-Violating Asymmetries in the Backward Angle G0 Electron Scattering Experiment

    Get PDF
    We have measured parity-violating asymmetries in elastic electron-proton and quasi-elastic electron-deuteron scattering at Q^2 = 0.22 and 0.63 GeV^2. They are sensitive to strange quark contributions to currents in the nucleon, and to the nucleon axial current. The results indicate strange quark contributions of < 10% of the charge and magnetic nucleon form factors at these four-momentum transfers. We also present the first measurement of anapole moment effects in the axial current at these four-momentum transfers.Comment: 5 pages, 2 figures, changed references, typo, and conten

    Origin of Complexity in Hemoglobin Evolution

    Get PDF
    Most proteins associate into multimeric complexes with specific architectures, which often have functional properties such as cooperative ligand binding or allosteric regulation. No detailed knowledge is available about how any multimer and its functions arose during evolution. Here we use ancestral protein reconstruction and biophysical assays to elucidate the origins of vertebrate hemoglobin, a heterotetramer of paralogous α- and β-subunits that mediates respiratory oxygen transport and exchange by cooperatively binding oxygen with moderate affinity. We show that modern hemoglobin evolved from an ancient monomer and characterize the historical “missing link” through which the modern tetramer evolved—a noncooperative homodimer with high oxygen affinity that existed before the gene duplication that generated distinct α- and β-subunits. Reintroducing just two post-duplication historical substitutions into the ancestral protein is sufficient to cause strong tetramerization by creating favorable contacts with more ancient residues on the opposing subunit. These surface substitutions markedly reduce oxygen affinity and even confer cooperativity because an ancient linkage between the oxygen binding site and the multimerization interface was already an intrinsic feature of the protein’s structure. Our findings establish that evolution can produce new complex molecular structures and functions via simple genetic mechanisms that recruit existing biophysical features into higher-level architectures. The interfaces that hold molecular complexes together typically involve sterically tight, electrostatically complementary interactions among many amino acids. Similarly, allostery and cooperativity usually depend on numerous residues that connect surfaces to active sites. The acquisition of such complicated machinery would seem to require elaborate evolutionary pathways. The classical explanation of this process, by analogy to the evolution of morphological complexity, is that multimerization conferred or enhanced beneficial functions, allowing selection to drive the many substitutions required to build and optimize new interfaces. Whether this account accurately describes the evolution of any natural molecular complex requires a detailed reconstruction of the historical steps by which it evolved. Hemoglobin (Hb) is a useful model for this purpose, because the structural mechanisms that mediate its multimeric assembly, cooperative oxygen binding, and allosteric regulation are well established. Moreover, its subunits descend by duplication and divergence from the same ancestral proteins, so their history can be reconstructed in a single analysis. Despite considerable speculation, virtually nothing is known about the evolutionary origin of Hb’s heterotetrameric architecture and the functions that depend on it

    Transverse Beam Spin Asymmetries at Backward Angles in Elastic Electron-Proton and Quasi-elastic Electron-Deuteron Scattering

    Get PDF
    We have measured the beam-normal single-spin asymmetries in elastic scattering of transversely polarized electrons from the proton, and performed the first measurement in quasi-elastic scattering on the deuteron, at backward angles (lab scattering angle of 108 degrees) for Q2 = 0.22 GeV^2/c^2 and 0.63 GeV^2/c^2 at beam energies of 362 MeV and 687 MeV, respectively. The asymmetry arises due to the imaginary part of the interference of the two-photon exchange amplitude with that of single photon exchange. Results for the proton are consistent with a model calculation which includes inelastic intermediate hadronic (piN) states. An estimate of the beam-normal single-spin asymmetry for the scattering from the neutron is made using a quasi-static deuterium approximation, and is also in agreement with theory
    corecore