126 research outputs found

    The trajectory taken by dimeric Cu/Zn superoxide dismutase through the protein unfolding and dissociation landscape is modulated by salt-bridge formation

    Get PDF
    Native mass spectrometry (MS) is a powerful means for studying macromolecular protein assemblies, including accessing activated states. However, much remains to be understood about what governs which regions of the protein (un)folding funnel are explored by activation of protein ions in vacuum. Here we examine the trajectory that Cu/Zn superoxide dismutase (SOD1) dimers take over the unfolding and dissociation free energy landscape in vacuum. We examined wild-type SOD1 and six disease-related point-mutants by using tandem MS and ion-mobility MS as a function of collisional activation. For six of the seven SOD1 variants, increasing activation prompted dimers to transition through two unfolding events and dissociate symmetrically into monomers with (as near as possible) equal charges. The exception was G37R, which proceeded only through the first unfolding transition, and displayed a much higher abundance of asymmetric products. Supported by the observation that ejected asymmetric G37R monomers were more compact than symmetric G37R ones, we localised this effect to the formation of a gas-phase salt-bridge in the first activated conformation. To examine the data quantitatively, we applied Arrhenius-type analysis to estimate the barriers on the corresponding free energy landscape. This reveals a heightening of the barrier to unfolding in G37R >5 kJmol-1 over the other variants, consistent with expectations for the strength of a salt-bridge. Our work demonstrates weaknesses in the simple general framework for understanding protein complex dissociation in vacuum, and highlights the importance of individual residues, their local environment, and specific interactions in governing product formation

    Carbene footprinting accurately maps binding sites in protein–ligand and protein–protein interactions

    Get PDF
    Specific interactions between proteins and their binding partners are fundamental to life processes. The ability to detect protein complexes, and map their sites of binding, is crucial to understanding basic biology at the molecular level. Methods that employ sensitive analytical techniques such as mass spectrometry have the potential to provide valuable insights with very little material and on short time scales. Here we present a differential protein footprinting technique employing an efficient photo-activated probe for use with mass spectrometry. Using this methodology the location of a carbohydrate substrate was accurately mapped to the binding cleft of lysozyme, and in a more complex example, the interactions between a 100 kDa, multi-domain deubiquitinating enzyme, USP5 and a diubiquitin substrate were located to different functional domains. The much improved properties of this probe make carbene footprinting a viable method for rapid and accurate identification of protein binding sites utilizing benign, near-UV photoactivation

    Insight into Coenzyme A cofactor binding and the mechanism of acyl-transfer in an acylating aldehyde dehydrogenase from Clostridium phytofermentans

    Get PDF
    The breakdown of fucose and rhamnose released from plant cell walls by the cellulolytic soil bacterium Clostridium phytofermentans produces toxic aldehyde intermediates. To enable growth on these carbon sources, the pathway for the breakdown of fucose and rhamnose is encapsulated within a bacterial microcompartment (BMC). These proteinaceous organelles sequester the toxic aldehyde intermediates and allow the efficient action of acylating aldehyde dehydrogenase enzymes to produce an acyl-CoA that is ultimately used in substrate-level phosphorylation to produce ATP. Here we analyse the kinetics of the aldehyde dehydrogenase enzyme from the fucose/rhamnose utilisation BMC with different short-chain fatty aldehydes and show that it has activity against substrates with up to six carbon atoms, with optimal activity against propionaldehyde. We have also determined the X-ray crystal structure of this enzyme in complex with CoA and show that the adenine nucleotide of this cofactor is bound in a distinct pocket to the same group in NAD(+). This work is the first report of the structure of CoA bound to an aldehyde dehydrogenase enzyme and our crystallographic model provides important insight into the differences within the active site that distinguish the acylating from non-acylating aldehyde dehydrogenase enzymes

    Dynamical structure of αB-crystallin

    No full text
    The human small heat-shock protein αB-crystallin is an extremely difficult molecule to study, with its inherent structural dynamics posing unique challenges to all biophysical and structural biology techniques. Here we highlight how the polydispersity and quaternary dynamics of αB-crystallin are intrinsically inter-twined, and how this can impact on measurements of the oligomeric distribution. We show that, in spite of these difficulties, considerable understanding of the varied fluctuations αB-crystallin undergoes at equilibrium has emerged in the last few years. By reporting on data obtained from a variety of biophysical techniques, we demonstrate how the αB-crystallin solution ensemble is governed by molecular motions of varying amplitude and time-scales spanning several orders of magnitude. We describe how these diverse measurements are being used to construct an integrated view of the dynamical structure of αB-crystallin, and highlight areas that require further interrogation. With its study motivating the refinement of experimental techniques, and the development of new approaches to combine the hybrid datasets, we conclude that αB-crystallin continues to represent a paradigm for dynamical biology. © 2014 Elsevier Ltd

    EM∩IM: software for relating ion mobility mass spectrometry and electron microscopy data

    No full text
    We present EM∩IM, software that allows the calculation of collision cross-sections from electron density maps obtained for example by means of transmission electron microscopy. This allows the assessment of structures other than those described by atomic coordinates with ion mobility mass spectrometry data, and provides a new means for contouring and validating electron density maps. EM∩IM thereby facilitates the use of data obtained in the gas phase within structural biology studies employing diverse experimental methodologies

    Small heat-shock proteins and their role in mechanical stress

    No full text
    The ability of cells to respond to stress is central to health. Stress can damage folded proteins, which are vulnerable to even minor changes in cellular conditions. To maintain proteostasis, cells have developed an intricate network in which molecular chaperones are key players. The small heat-shock proteins (sHSPs) are a widespread family of molecular chaperones, and some sHSPs are prominent in muscle, where cells and proteins must withstand high levels of applied force. sHSPs have long been thought to act as general interceptors of protein aggregation. However, evidence is accumulating that points to a more specific role for sHSPs in protecting proteins from mechanical stress. Here, we briefly introduce the sHSPs and outline the evidence for their role in responses to mechanical stress. We suggest that sHSPs interact with mechanosensitive proteins to regulate physiological extension and contraction cycles. It is likely that further study of these interactions – enabled by the development of experimental methodologies that allow protein contacts to be studied under the application of mechanical force – will expand our understanding of the activity and functions of sHSPs, and of the roles played by chaperones in general

    Mass spectrometry: Come of age for structural and dynamical biology

    No full text
    Over the past two decades, mass spectrometry (MS) has emerged as a bone fide approach for structural biology. MS can inform on all levels of protein organization, and enables quantitative assessments of their intrinsic dynamics. The key advantages of MS are that it is a sensitive, high-resolution separation technique with wide applicability, and thereby allows the interrogation of transient protein assemblies in the context of complex mixtures. Here we describe how molecular-level information is derived from MS experiments, and how it can be combined with spatial and dynamical restraints obtained from other structural biology approaches to allow hybrid studies of protein architecture and movements. © 2011 Elsevier Ltd

    Biobox: a toolbox for biomolecular modelling

    No full text
    Motivation The implementation of biomolecular modelling methods and analyses can be cumbersome, often carried out with in-house software reimplementing common tasks, and requiring the integration of diverse software libraries. Results We present Biobox, a Python-based toolbox facilitating the implementation of biomolecular modelling methods. Availability and implementation Biobox is freely available on https://github.com/degiacom/biobox, along with its API and interactive Jupyter notebook tutorials

    The influence of the N-terminal region proximal to the core domain on the assembly and chaperone activity of αB-crystallin

    No full text
    αB-Crystallin (HSPB5) is a small heat-shock protein that is composed of dimers that then assemble into a polydisperse ensemble of oligomers. Oligomerisation is mediated by heterologous interactions between the C-terminal tail of one dimer and the core "α-crystallin" domain of another and stabilised by interactions made by the N-terminal region. Comparatively little is known about the latter contribution, but previous studies have suggested that residues in the region 54-60 form contacts that stabilise the assembly. We have generated mutations in this region (P58A, S59A, S59K, R56S/S59R and an inversion of residues 54-60) to examine their impact on oligomerisation and chaperone activity in vitro. By using native mass spectrometry, we found that all the αB-crystallin mutants were assembly competent, populating similar oligomeric distributions to wild-type, ranging from 16-mers to 30-mers. However, circular dichroism spectroscopy, intrinsic tryptophan and bis-ANS fluorescence studies demonstrated that the secondary structure differs to wild type, the 54-60 inversion mutation having the greatest impact. All the mutants exhibited a dramatic decrease in exposed hydrophobicity. We also found that the mutants in general were equally active as the wild-type protein in inhibiting the amorphous aggregation of insulin and seeded amyloid fibrillation of α-synuclein in vitro, except for the 54-60 inversion mutant, which was significantly less effective at inhibiting insulin aggregation. Our data indicate that alterations in the part of the N-terminal region proximal to the core domain do not drastically affect the oligomerisation of αB-crystallin, reinforcing the robustness of αB-crystallin in functioning as a molecular chaperone
    • …
    corecore