48 research outputs found

    Variations of the extrapsoas course of the lumbar plexus with implications for the lateral transpsoas approach to the lumbar spine: a cadaveric study

    Get PDF
    Background: Together with an increased interest in minimally invasive lateral transpsoas approach to the lumbar spine goes a demand for detailed anatomical descriptions of the lumbar plexus. Although definitions of safe zones and essential descriptions of topographical anatomy have been presented in several studies, the existing literature expects standard appearance of the neural structures. Therefore, the aim of this study was to investigate the variability of the extrapsoas portion of the lumbar plexus in regard to the lateral transpsoas approach. Methods: A total of 260 lumbar regions from embalmed cadavers were utilized in this study. The specimens were dissected as per protocol and all nerves from the lumbar plexus were morphologically evaluated. Results: The most common variation of the iliohypogastric and ilioinguinal nerves was fusion of these two nerves (9.6%). Nearly in the half of the cases (48.1%) the genitofemoral nerve left the psoas major muscle already divided into the femoral and genital branches. The lateral femoral cutaneous nerve was the least variable one as it resembled its normal morphology in 95.0% of cases. Regarding the variant origins of the femoral nerve, there was a low formation outside the psoas major muscle in 3.8% of cases. The obturator nerve was not variable at its emergence point but frequently branched (40.4%) before entering the obturator canal. In addition to the proper femoral and obturator nerves, accessory nerves were present in 12.3% and 9.2% of cases, respectively. Conclusion: Nerves of the lumbar plexus frequently show atypical anatomy outside the psoas major muscle. The presented study provides a compendious information source of the possibly encountered neural variations during retroperitoneal access to different segments of the lumbar spine

    Tumor Cell–Intrinsic c-Myb Upregulation Stimulates Antitumor Immunity in a Murine Colorectal Cancer Model

    Full text link
    The transcription factor c-Myb is overexpressed in many different types of solid tumors, including colorectal cancer. However, its exact role in tumorigenesis is unclear. In this study, we show that tumor-intrinsic c-Myb expression in mouse models of colon cancer and melanoma suppresses tumor growth. Although no differences in proliferation, apoptosis, and angiogenesis of tumors were evident in tumors with distinct levels of c-Myb expression, we observed changes in intratumoral immune cell infiltrates. MC38 tumors with upregulated c-Myb expression showed increased numbers of CD103+ dendritic cells and eosinophils, but decreased tumor-associated macrophages (TAM). Concomitantly, an increase in the number of activated cytotoxic CD8+ T cells upon c-Myb upregulation was observed, which correlated with a pro-inflammatory tumor microenvironment and increased numbers of M1 polarized TAMs. Mechanistically, c-Myb upregulation in immunogenic MC38 colon cancer cells resulted in enhanced expression of immunomodulatory genes, including those encoding β2-microglobulin and IFNβ, and decreased expression of the gene encoding the chemokine receptor CCR2. The increased numbers of activated cytotoxic CD8+ T cells contributed to tumor growth attenuation. In poorly immunogenic CT26, LLC, and B16-BL6 tumor cells, c-Myb upregulation did not affect the immunomodulatory gene expression. Despite this, c-Myb upregulation led to reduced B16-BL6 tumor growth but it did not affect tumor growth of CT26 and LLC tumors. Altogether, we postulate that c-Myb functions as a tumor suppressor in a tumor cell–type specific manner and modulates antitumor immunity

    Proteomic and transcriptomic analysis of heart failure due to volume overload in a rat aorto-caval fistula model provides support for new potential therapeutic targets - monoamine oxidase A and transglutaminase 2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic hemodynamic overloading leads to heart failure (HF) due to incompletely understood mechanisms. To gain deeper insight into the molecular pathophysiology of volume overload-induced HF and to identify potential markers and targets for novel therapies, we performed proteomic and mRNA expression analysis comparing myocardium from Wistar rats with HF induced by a chronic aorto-caval fistula (ACF) and sham-operated rats harvested at the advanced, decompensated stage of HF.</p> <p>Methods</p> <p>We analyzed control and failing myocardium employing iTRAQ labeling, two-dimensional peptide separation combining peptide IEF and nano-HPLC with MALDI-MS/MS. For the transcriptomic analysis we employed Illumina RatRef-12v1 Expression BeadChip.</p> <p>Results</p> <p>In the proteomic analysis we identified 2030 myocardial proteins, of which 66 proteins were differentially expressed. The mRNA expression analysis identified 851 differentially expressed mRNAs.</p> <p>Conclusions</p> <p>The differentially expressed proteins confirm a switch in the substrate preference from fatty acids to other sources in the failing heart. Failing hearts showed downregulation of the major calcium transporters SERCA2 and ryanodine receptor 2 and altered expression of creatine kinases. Decreased expression of two NADPH producing proteins suggests a decreased redox reserve. Overexpression of annexins supports their possible potential as HF biomarkers. Most importantly, among the most up-regulated proteins in ACF hearts were monoamine oxidase A and transglutaminase 2 that are both potential attractive targets of low molecular weight inhibitors in future HF therapy.</p

    Understanding the socio-economic causes of deforestation: a global perspective

    Get PDF
    IntroductionThis paper investigates the links between deforestation and key economic, social, environmental, and geographical variables. We focus on per capita GDP, total forest cover, and the population across a diverse sample of countries from five continents for the last three decades.MethodsThis study utilizes a regression model using panel data to show the impact of key economic, and social variables on deforestation. Also, set of dummy variables is introduced in the paper. To enable the investigation, we use a set of dummies to capture their influence. The random effect specifications are used in this investigation. The research focuses on a period ranging from 1990 to 2020.ResultsResults show how different socio-economic variables influence deforestation. For example, disruptive events like the COVID-19 pandemic and the financial crisis had a negative effect on forest area development across all models. GDP per capita has different impact depending on the size of a country. Former colonies seem to have more deforestation.ConclusionsThe global environmental challenges posed by human activities and their impact on the state of forest have become increasingly evident. It is necessary to undertake policy and governance reforms to establish a solid legal framework, strengthen enforcement mechanisms, and foster transparency and accountability. The promotion of sustainable agriculture and agroforestry practices can substantially alleviate pressure on forests. Furthermore, it is necessary to mitigate disruptive events like pandemics by establishing specific strategies and creating contingency plans

    CAVER Analyst 1.0: graphic tool for interactive visualization and analysis of tunnels and channels in protein structures

    Get PDF
    ABSTRACT Summary: The transport of ligands, ions or solvent molecules into proteins with buried binding sites or through the membrane is enabled by protein tunnels and channels. CAVER Analyst is a software tool for calculation, analysis and real-time visualization of access tunnels and channels in static and dynamic protein structures. It provides an intuitive graphic user interface for setting up the calculation and interactive exploration of identified tunnels/channels and their characteristics. Availability and Implementation: CAVER Analyst is a multi-platform software written in JAVA. Binaries and documentation are freely available for non-commercial use at http://www.caver.cz
    corecore