185 research outputs found

    GEO 582.02: Tectonic Geomorphology

    Get PDF

    Body-wave tomographic imaging of the Turkana Depression: Implications for rift development and plume-lithosphere interactions

    Get PDF
    The Turkana Depression, a topographically-subdued, broadly-rifted zone between the elevated East African and Ethiopian plateaus, disrupts the N–S, fault-bounded rift basin morphology that characterizes most of the East African Rift. The unusual breadth of the Turkana Depression leaves unanswered questions about the initiation and evolution of rifting between the Main Ethiopian and Eastern rifts. Hypotheses explaining the unusually broad, low-lying area include superposed Mesozoic and Cenozoic rifting and a lack of mantle lithospheric thinning and dynamic support. To address these issues, we have carried out the first body-wave tomographic study of the Depression’s upper mantle. Seismically-derived temperatures at 100 km depth exceed petrological estimates, suggesting the presence of mantle melt, although not as voluminous as the Main Ethiopian Rift, contributes to velocity anomalies. A NW–SE-trending high wavespeed band in southern Ethiopia at urn:x-wiley:15252027:media:ggge22580:ggge22580-math-0001200 km depth is interpreted as refractory Proterozoic lithosphere which has likely influenced the localization of both Mesozoic and Cenozoic rifting. At urn:x-wiley:15252027:media:ggge22580:ggge22580-math-0002100 km depth below the central Depression, a single localized low wavespeed zone is lacking. Only in the northernmost Eastern Rift and southern Lake Turkana is there evidence for focused low wavespeeds resembling the Main Ethiopian Rift, that bifurcate below the Depression and broaden approaching southern Ethiopia further north. These low wavespeeds may be attributed to melt-intruded mantle lithosphere or ponded asthenospheric material below lithospheric thin-spots induced by the region's multiple rifting phases. Low wavespeeds persist to the mantle transition zone suggesting the Depression may not lack mantle dynamic support in comparison to the two plateaus

    The development of multiple phases of superposed rifting in the Turkana Depression, East Africa: evidence from receiver functions

    Get PDF
    The Turkana Depression in Eastern Africa separates the elevated plateaus of East Africa to the south and Ethiopia-Yemen to the north. It remains unclear whether the Depression lacks dynamic mantle support, or if the entire East Africa region is dynamically supported and the Depression compensated isostatically by thinned crust. Also poorly understood is how Miocene-Recent extension has developed across the Depression, connecting spatially separated magmatic rift zones in Ethiopia and Kenya. Receiver function analysis is used to constrain Moho depth and bulk-crustal V P /V S ratio below new seismograph networks in the Depression, and on the northern Tanzania craton. Crustal thickness is ∼40 km below northern Uganda and 30–35 km below southern Ethiopia, but 20–30 km below most of the Depression, where mass-balance calculations reveal low elevations can be explained adequately by crustal thinning alone. Despite the fact that magmatism has occurred for 45 Ma across the Depression, more than 15 Ma before East African Rift (EAR) extension initiated, bulk crustal V P /V S across southern Ethiopia and the Turkana Depression (∼1.74) is similar to that observed in areas unaffected by Cenozoic rifting and magmatism. Evidence for voluminous lower crustal intrusions and/or melt, widespread below the Ethiopian rift and Ethiopian plateau to the north, is therefore lacking. These observations, when reviewed in light of high stretching factors (β ≤ 2.11), suggest Cenozoic extension has been dominated until recently by faulting and plate stretching, rather than magma intrusion, which is likely an incipient process, operating directly below seismically-active Lake Turkana. Early-stage EAR basins to the west of Lake Turkana, with associated stretching factors of β ≈ 2, formed in crust only moderately thinned during earlier rifting episodes. Conversely, ∼23 km-thick crust beneath the Kino Sogo Fault Belt (KSFB) has small offset faults and thin sedimentary strata, suggesting almost all of the observed stretching occurred in Mesozoic times. Despite the KSFB marking the shortest path between focused extensional zones to the north and south, seismicity and GPS data show that modern extension is localized below Lake Turkana to the west. Failed Mesozoic rift zones, now characterized by thinned crust and relatively refractory mantle lithosphere, are being circumnavigated, not exploited by EAR rifting

    The stabilizing role of itinerant ferromagnetism in inter-granular cohesion in iron

    Full text link
    We present a simple, general energy functional for ferromagnetic materials based upon a local spin density extension to the Stoner theory of itinerant ferromagnetism. The functional reproduces well available ab initio results and experimental interfacial energies for grain boundaries in iron. The model shows that inter-granular cohesion along symmetric tilt boundaries in iron is dependent upon strong magnetic structure at the interface, illuminates the mechanisms underlying this structure, and provides a simple explanation for relaxation of the atomic structure at these boundaries.Comment: In review at Phys. Rev. Lett. Submitted 23 September 1997; revised 16 March 199

    Impact of age norms and stereotypes on managers' hiring decisions of retirees

    Get PDF
    Purpose -Our study investigates the role of managers in the re-employment of early retirees and asks what the effect is of managers’ age norms and stereotypes on managers’ employment decisions. Design/methodology/approach- A combination of a factorial study and a survey was conducted. First, information on the age norms and stereotypes was collected. Secondly, profiles of hypothetical retired job applicants were presented to the employers, who were asked to make a specific hiring decision. The information collected during both studies was combined in the analysis and multilevel models were estimated. Findings -The results indicate that higher age norms result in a higher propensity to hire an early retiree. Stereotypes, by contrast, do not influence managers’ decisions. Early retirees’ chances for re-employment are also related to their own circumstances (physical appearance and relevant experience) and organisational forces, as they are hired when organisations face labour force shortages. Research limitation / implications – with the use of vignettes study we deal with hypothetical hiring situation. Originality value- Although the effect of age norms and age stereotypes has been often suggested, not much empirical evidence was presented to support this notion. Our study estimates the effect of age norms and stereotypes on hiring decision. key words: bridge employment; early retirees; age norms; age stereotypes; multilevel models.

    Instability of the rhodium magnetic moment as origin of the metamagnetic phase transition in alpha-FeRh

    Full text link
    Based on ab initio total energy calculations we show that two magnetic states of rhodium atoms together with competing ferromagnetic and antiferromagnetic exchange interactions are responsible for a temperature induced metamagnetic phase transition, which experimentally is observed for stoichiometric alpha-FeRh. A first-principle spin-based model allows to reproduce this first-order metamagnetic transition by means of Monte Carlo simulations. Further inclusion of spacial variation of exchange parameters leads to a realistic description of the experimental magneto-volume effects in alpha-FeRh.Comment: 10 pages, 13 figures, accepted for publication in Phys. Rev.

    Systematic review and meta-analysis of the diagnostic accuracy of ultrasonography for deep vein thrombosis

    Get PDF
    Background Ultrasound (US) has largely replaced contrast venography as the definitive diagnostic test for deep vein thrombosis (DVT). We aimed to derive a definitive estimate of the diagnostic accuracy of US for clinically suspected DVT and identify study-level factors that might predict accuracy. Methods We undertook a systematic review, meta-analysis and meta-regression of diagnostic cohort studies that compared US to contrast venography in patients with suspected DVT. We searched Medline, EMBASE, CINAHL, Web of Science, Cochrane Database of Systematic Reviews, Cochrane Controlled Trials Register, Database of Reviews of Effectiveness, the ACP Journal Club, and citation lists (1966 to April 2004). Random effects meta-analysis was used to derive pooled estimates of sensitivity and specificity. Random effects meta-regression was used to identify study-level covariates that predicted diagnostic performance. Results We identified 100 cohorts comparing US to venography in patients with suspected DVT. Overall sensitivity for proximal DVT (95% confidence interval) was 94.2% (93.2 to 95.0), for distal DVT was 63.5% (59.8 to 67.0), and specificity was 93.8% (93.1 to 94.4). Duplex US had pooled sensitivity of 96.5% (95.1 to 97.6) for proximal DVT, 71.2% (64.6 to 77.2) for distal DVT and specificity of 94.0% (92.8 to 95.1). Triplex US had pooled sensitivity of 96.4% (94.4 to 97.1%) for proximal DVT, 75.2% (67.7 to 81.6) for distal DVT and specificity of 94.3% (92.5 to 95.8). Compression US alone had pooled sensitivity of 93.8 % (92.0 to 95.3%) for proximal DVT, 56.8% (49.0 to 66.4) for distal DVT and specificity of 97.8% (97.0 to 98.4). Sensitivity was higher in more recently published studies and in cohorts with higher prevalence of DVT and more proximal DVT, and was lower in cohorts that reported interpretation by a radiologist. Specificity was higher in cohorts that excluded patients with previous DVT. No studies were identified that compared repeat US to venography in all patients. Repeat US appears to have a positive yield of 1.3%, with 89% of these being confirmed by venography. Conclusion Combined colour-doppler US techniques have optimal sensitivity, while compression US has optimal specificity for DVT. However, all estimates are subject to substantial unexplained heterogeneity. The role of repeat scanning is very uncertain and based upon limited data

    Crustal Azimuthal Anisotropy Beneath the Central North China Craton Revealed by Receiver Functions

    Get PDF
    To characterize crustal anisotropy beneath the central North China Craton (CNCC), we apply a recently developed deconvolution approach to effectively remove near-surface reverberations in the receiver functions recorded at 200 broadband seismic stations and subsequently determine the fast orientation and the magnitude of crustal azimuthal anisotropy by fitting the sinusoidal moveout of the P to S converted phases from the Moho and intracrustal discontinuities. The magnitude of crustal anisotropy is found to range from 0.06 s to 0.54Â s, with an average of 0.25 ± 0.08Â s. Fault-parallel anisotropy in the seismically active Zhangjiakou-Penglai Fault Zone is significant and could be related to fluid-filled fractures. Historical strong earthquakes mainly occurred in the fault zone segments with significant crustal anisotropy, suggesting that the measured crustal anisotropy is closely related to the degree of crustal deformation. The observed spatial distribution of crustal anisotropy suggests that the northwestern terminus of the fault zone probably ends at about 114°E. Also observed is a sharp contrast in the fast orientations between the western and eastern Yanshan Uplifts separated by the North-South Gravity Lineament. The NW-SE trending anisotropy in the western Yanshan Uplift is attributable to fossil crustal anisotropy due to lithospheric extension of the CNCC, while extensional fluid-saturated microcracks induced by regional compressive stress are responsible for the observed ENE-WSW trending anisotropy in the eastern Yanshan Uplift. Comparison of crustal anisotropy measurements and previously determined upper mantle anisotropy implies that the degree of crust-mantle coupling in the CNCC varies spatially
    corecore