1,203 research outputs found
On the Formation of Boxy and Disky Elliptical Galaxies
The origin of boxy and disky elliptical galaxies is investigated. The results
of two collisionless N-body simulations of spiral-spiral mergers with mass
ratios of 1:1 and 3:1 are discussed and the projected properties of the merger
remnants are investigated. It is shown that the equal-mass merger leads to an
anisotropic, slowly rotating system with preferentially boxy isophotes and
significant minor axis rotation. The unequal-mass merger results in the
formation of a rotationally supported elliptical with disky isophotes and small
minor axis rotation. The observed scatter in the kinematical and isophotal
properties of both classes of elliptical galaxies can be explained by
projection effects.Comment: 12 pages, incl. 5 figures, accepted by ApJ Letter
iPACOSE: an iterative algorithm for the estimation of gene regulation networks
In the context of Gaussian Graphical Models (GGMs) with high-
dimensional small sample data, we present a simple procedure to esti-
mate partial correlations under the constraint that some of them are
strictly zero. This method can also be extended to covariance selection.
If the goal is to estimate a GGM, our new procedure can be applied
to re-estimate the partial correlations after a first graph has been esti-
mated in the hope to improve the estimation of non-zero coefficients. In
a simulation study, we compare our new covariance selection procedure
to existing methods and show that the re-estimated partial correlation
coefficients may be closer to the real values in important cases
Iterative reconstruction of high-dimensional Gaussian Graphical Models based on a new method to estimate partial correlations under constraints.
In the context of Gaussian Graphical Models (GGMs) with high-dimensional small sample data, we present a simple procedure, called PACOSE - standing for PArtial COrrelation SElection - to estimate partial correlations under the constraint that some of them are strictly zero. This method can also be extended to covariance selection. If the goal is to estimate a GGM, our new procedure can be applied to re-estimate the partial correlations after a first graph has been estimated in the hope to improve the estimation of non-zero coefficients. This iterated version of PACOSE is called iPACOSE. In a simulation study, we compare PACOSE to existing methods and show that the re-estimated partial correlation coefficients may be closer to the real values in important cases. Plus, we show on simulated and real data that iPACOSE shows very interesting properties with regards to sensitivity, positive predictive value and stability
Utilizing traditional Chinese for the discovery of efficacious new drugs
RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Incorporating Road Networks into Territory Design
Given a set of basic areas, the territory design problem asks to create a
predefined number of territories, each containing at least one basic area, such
that an objective function is optimized. Desired properties of territories
often include a reasonable balance, compact form, contiguity and small average
journey times which are usually encoded in the objective function or formulated
as constraints. We address the territory design problem by developing graph
theoretic models that also consider the underlying road network. The derived
graph models enable us to tackle the territory design problem by modifying
graph partitioning algorithms and mixed integer programming formulations so
that the objective of the planning problem is taken into account. We test and
compare the algorithms on several real world instances
A generalized additive model approach to time-to-event analysis
This tutorial article demonstrates how time-to-event data can be modelled in a very flexible way by taking advantage of advanced inference methods that have recently been developed for generalized additive mixed models. In particular, we describe the necessary pre-processing steps for transforming such data into a suitable format and show how a variety of effects, including a smooth nonlinear baseline hazard, and potentially nonlinear and nonlinearly time-varying effects, can be estimated and interpreted. We also present useful graphical tools for model evaluation and interpretation of the estimated effects. Throughout, we demonstrate this approach using various application examples. The article is accompanied by a new R-package called pammtools implementing all of the tools described here
- …