62 research outputs found

    The transcription factors BEL1 and SPL are required for cytokinin and auxin signaling during ovule development in Arabidopsis

    Get PDF
    Hormones, such as auxin and cytokinin, are involved in the complex molecular network that regulates the coordinated development of plant organs. Genes controlling ovule patterning have been identified and studied in detail; however, the roles of auxin and cytokinin in ovule development are largely unknown. Here we show that key cytokinin pathway genes, such as isopentenyltransferase and cytokinin receptors, are expressed during ovule development. Also, in a cre1-12 ahk2-2 ahk3-3 triple mutant with severely reduced cytokinin perception, expression of the auxin efflux facilitator PIN-FORMED 1 (PIN1) was severely reduced. In sporocyteless/nozzle (spl/nzz) mutants, which show a similar phenotype to the cre1-12 ahk2-2 ahk3-3 triple mutant, PIN1 expression is also reduced. Treatment with the exogenous cytokinin N-6-benzylaminopurine also altered both auxin distribution and patterning of the ovule; this process required the homeodomain transcription factor BELL1 (BEL1). Thus, this article shows that cytokinin regulates ovule development through the regulation of PIN1. Furthermore, the transcription factors BEL1 and SPL/NZZ, previously described as key regulators of ovule development, are needed for the auxin and cytokinin signaling pathways for the correct patterning of the ovule

    A paternal signal induces endosperm proliferation upon fertilization in Arabidopsis

    Get PDF
    In multicellular organisms, sexual reproduction relies on the formation of highly differentiated cells, the gametes, which await fertilization in a quiescent state. Upon fertilization, the cell cycle resumes. Successful development requires that male and female gametes are in the same phase of the cell cycle. The molecular mechanisms that reinstate cell division in a fertilization-dependent manner are poorly understood in both animals and plants. Using Arabidopsis, we show that a sperm-derived signal induces the proliferation of a female gamete, the central cell, precisely upon fertilization. The central cell is arrested in S phase by the activity of the RETINOBLASTOMA RELATED1 (RBR1) protein. Upon fertilization, delivery of the core cell cycle component CYCD7;1 causes RBR1 degradation and thus S phase progression, ensuring the formation of functional endosperm and, consequently, viable seeds

    Auxin-Induced Modulation of ETTIN Activity Orchestrates Gene Expression in Arabidopsis

    Full text link
    The phytohormone auxin governs crucial developmental decisions throughout the plant life cycle. Auxin signaling is effectuated by auxin response factors (ARFs) whose activity is repressed by Aux/IAA proteins under low auxin levels, but relieved from repression when cellular auxin concentrations increase. ARF3/ETTIN (ETT) is a conserved noncanonical Arabidopsis thaliana ARF that adopts an alternative auxin-sensing mode of translating auxin levels into multiple transcriptional outcomes. However, a mechanistic model for how this auxin-dependent modulation of ETT activity regulates gene expression has not yet been elucidated. Here, we take a genome-wide approach to show how ETT controls developmental processes in the Arabidopsis shoot through its auxin-sensing property. Moreover, analysis of direct ETT targets suggests that ETT functions as a central node in coordinating auxin dynamics and plant development and reveals tight feedback regulation at both the transcriptional and protein-interaction levels. Finally, we present an example to demonstrate how auxin sensitivity of ETT-protein interactions can shape the composition of downstream transcriptomes to ensure specific developmental outcomes. These results show that direct effects of auxin on protein factors, such as ETT-TF complexes, comprise an important part of auxin biology and likely contribute to the vast number of biological processes affected by this simple molecule

    Wheat developmental traits as affected by the interaction between Eps-7D and temperature under contrasting photoperiods with insensitive Ppd-D1 background

    Get PDF
    Earliness per se (Eps) genes are important to fine tune adaptation, and studying their probable pleiotropic effect on wheat yield traits is worthwhile. In addition, it has been shown that some Eps genes interact with temperature and therefore determining the likely Eps × temperature interaction is needed for each newly identified Eps gene. We studied two NILs differing in the newly identified Eps-7D (carrying insensitive Ppd-D1 in the background) under three temperature regimes (9, 15 and 18 °C) and two photoperiods (12 and 24 h). Eps-7D affected time to anthesis as expected and the Eps-7D-late allele extended both the period before and after terminal spikelet. The interaction effect of Eps-7D × temperature was significant but not cross-over: the magnitude and level of significance of the difference between NILs with the late or early allele was affected by the growing temperature (i.e., difference was least at 18 °C and largest at 9 °C), and the differences caused due to temperature sensitivity were influenced by photoperiod. The rate of leaf initiation was faster in NIL with Eps-7D-early than with the late allele which compensated for the shorter duration of leaf initiation resulting in similar final leaf number between two NILs. Eps-7D-late consistently increased spike fertility through improving floret primordia survival as a consequence of extending the late reproductive phase.This research was funded by Spanish Research Agency (AEI), project AGL2015-69595-R; International Wheat Yield Partnership (IWYP), project IWYP25FP

    Palliation with a multimodality treatment including hypoxic pelvic perfusion for unresectable recurrent rectal cancer: outcomes based on a retrospective study

    Get PDF
    Patients with unresectable recurrent rectal cancer that progresses after systemic chemotherapy and radiotherapy are candidates for palliation with hypoxic pelvic perfusion (HPP). The aim of this observational retrospective study was to evaluate if a multimodality treatment including HPP and targeted-therapy may be useful to prolong clinical responses and survival of these patients. From a cohort of 77 patients with unresectable recurrent rectal cancer in progression after standard treatments and submitted to HPP, 21 patients underwent repeat HPP using mitomycin C (MMC) at the dose of 25 mg/m2. After the last HPP, 7 patients received a targeted-therapy with cetuximab according to overexpression of epidermal growth factor receptor in recurrence cancer cells. The median overall survival of these 21 patients from the diagnosis of unresectable recurrent rectal cancer was 23 months (iqr 18-24). After the first HPP, the median survival of the 21 patients until death or end of follow-up was 10 months (iqr 9-13). The 1-year and 2-year survival rates were 71.4%, and 4.8%, respectively. From the first HPP, age\u2009>\u200960 years, a recurrence shrinkage of at least 30% (partial response), and the addition of a post-HPP targeted-therapy with cetuximab significantly affected survival (P\u2009<\u20090.04). In conclusion, repeated MMC-HPP followed by targeted-therapy seems to be an effective palliative treatment for patients with unresectable recurrent rectal cancer in progression after systemic chemotherapy and radiation but the results of this study have to be confirmed by a larger phase III trial

    Ultrafast dynamics in (TaSe4)2I triggered by valence and core-level excitation

    Get PDF
    Dimensionality plays a key role in the emergence of ordered phases, such as charge density-waves (CDW), which can couple to, and modulate, the topological properties of matter. In this work, we study the out-of-equilibrium dynamics of the paradigmatic quasi-one-dimensional material (TaSe4)2I, which exhibits a transition into an incommensurate CDW phase when cooled to just below room temperature, namely at TCDW = 263 K. We make use of both optical laser and free-electron laser (FEL) based time-resolved spectroscopies in order to study the effect of a selective excitation on the normal-state and on the CDW phases by probing the near-infrared/visible optical properties both along and perpendicularly to the direction of the CDW, where the system is metallic and insulating, respectively. Excitation of the core-levels by ultrashort X-ray FEL pulses at 47 eV and 119 eV induces reflectivity transients resembling those recorded when only exciting the valence band of the compound - by near-infrared pulses at 1.55 eV - in the case of the insulating sub-system. Conversely, the metallic sub-system displays relaxation dynamics which depend on the energy of photo-excitation. Moreover, excitation of the CDW amplitude mode is recorded only for excitation at a low-photon-energy. This fact suggests that the coupling of light to ordered states of matter can predominantly be achieved when directly injecting delocalized carriers in the valence band, rather than localized excitations in the core levels. Complementing this, table-top experiments allow us to prove the quasi-unidirectional nature of the CDW phase in (TaSe4)2I, whose fingerprints are detected along its c-axis only. Our results provide new insights into the symmetry of the ordered phase of (TaSe4)2I perturbed by a selective excitation, and suggest a novel approach based on complementary table-top and FEL spectroscopies for the study of complex materials

    Nanoscale transient polarization gratings

    Full text link
    We present the generation of transient polarization gratings at the nanoscale, achieved using a tailored accelerator configuration of the FERMI free electron laser. We demonstrate the capabilities of such a transient polarization grating by comparing its induced dynamics with the ones triggered by a more conventional intensity grating on a thin film ferrimagnetic alloy. While the signal of the intensity grating is dominated by the thermoelastic response of the system, such a contribution is suppressed in the case of the polarization grating. This exposes helicity-dependent magnetization dynamics that have so-far remained hidden under the large thermally driven response. We anticipate nanoscale transient polarization gratings to become useful for the study of any physical, chemical and biological systems possessing chiral symmetry

    FEL stochastic spectroscopy revealing silicon bond softening dynamics

    Full text link
    Time-resolved X-ray Emission/Absorption Spectroscopy (Tr-XES/XAS) is an informative experimental tool sensitive to electronic dynamics in materials, widely exploited in diverse research fields. Typically, Tr-XES/XAS requires X-ray pulses with both a narrow bandwidth and sub-picosecond pulse duration, a combination that in principle finds its optimum with Fourier transform-limited pulses. In this work, we explore an alternative xperimental approach, capable of simultaneously retrieving information about unoccupied (XAS) and occupied (XES) states from the stochastic fluctuations of broadband extreme ultraviolet pulses of a free-electron laser. We used this method, in combination with singular value decomposition and Tikhonov regularization procedures, to determine the XAS/XES response from a crystalline silicon sample at the L2,3-edge, with an energy resolution of a few tens of meV. Finally, we combined this spectroscopic method with a pump-probe approach to measure structural and electronic dynamics of a silicon membrane. Tr-XAS/XES data obtained after photoexcitation with an optical laser pulse at 390 nm allowed us to observe perturbations of the band structure, which are compatible with the formation of the predicted precursor state of a non-thermal solid-liquid phase transition associated with a bond softening phenomenon
    corecore