686 research outputs found
Submillimeter CO emission from shock-heated gas in the L1157 outflow
We present the CO J=6-5, 4-3, and 3-2 spectra from the blueshifted gas of the
outflow driven by the low-mass class 0 protostar in the L1157 dark cloud.
Strong submillimeter CO emission lines with T_mb > 30 K have been detected at
63" (~0.13 pc) south from the protostar. It is remarkable that the blue wings
in the submillimeter lines are stronger by a factor of 3-4 than that of the CO
J=1-0 emission line. The CO line ratios suggest that the blueshifted lobe of
this outflow consists of moderately dense gas of n(H_2) = (1-3)x10^4 cm^-3
heated to T_kin = 50-170 K.It is also suggested that the kinetic temperature of
the outflowing gas increases from ~80 K near the protostar to ~170 K at the
shocked region in the lobe center, toward which the largest velocity dispersion
of the CO emission is observed. A remarkable correlation between the kinetic
temperature and velocity dispersion of the CO emission along the lobe provides
us with direct evidence that the molecular gas at the head of the jet-driven
bow shock is indeed heated kinematically. The lower temperature of ~80 K
measured at the other shocked region near the end of the lobe is explained if
this shock is in a later evolutionary stage, in which the gas has been cooled
mainly through radiation of the CO rotational lines.Comment: 10 pages, 4 PDF figures, APJL in pres
Distortion of Gravitational-Wave Packets Due to their Self-Gravity
When a source emits a gravity-wave (GW) pulse over a short period of time,
the leading edge of the GW signal is redshifted more than the inner boundary of
the pulse. The GW pulse is distorted by the gravitational effect of the
self-energy residing in between these shells. We illustrate this distortion for
GW pulses from the final plunge of black hole (BH) binaries, leading to the
evolution of the GW profile as a function of the radial distance from the
source. The distortion depends on the total GW energy released and the duration
of the emission, scaled by the total binary mass, M. The effect should be
relevant in finite box simulations where the waveforms are extracted within a
radius of <~ 100M. For characteristic emission parameters at the final plunge
between binary BHs of arbitrary spins, this effect could distort the simulated
GW templates for LIGO and LISA by a fraction of 0.001. Accounting for the wave
distortion would significantly decrease the waveform extraction errors in
numerical simulations.Comment: accepted for publication in Physical Review
Giant Molecular Outflows Powered by Protostars in L1448
We present sensitive, large-scale maps of the CO J=1-0 emission of the L1448
dark cloud. These maps were acquired using the On-The-Fly capability of the
NRAO 12-meter telescope. CO outflow activity is seen in L1448 on parsec-scales
for the first time. Careful comparison of the spatial and velocity distribution
of our high-velocity CO maps with previously published optical and
near-infrared images and spectra has led to the identification of six distinct
CO outflows. We show the direct link between the heretofore unknown, giant,
highly-collimated, protostellar molecular outflows and their previously
discovered, distant optical manifestations. The outflows traced by our CO
mapping generally reach the projected cloud boundaries. Integrated intensity
maps over narrow velocity intervals indicate there is significant overlap of
blue- and red-shifted gas, suggesting the outflows are highly inclined with
respect to the line-of-sight, although the individual outflow position angles
are significantly different. The velocity channel maps also show that the
outflows dominate the CO line cores as well as the high-velocity wings. The
magnitude of the combined flow momenta, as well as the combined kinetic energy
of the flows, are sufficient to disperse the 50 solar mass NH3 cores in which
the protostars are currently forming, although some question remains as to the
exact processes involved in redirecting the directionality of the outflow
momenta to effect the complete dispersal of the parent cloud.Comment: 11 pages, 9 figures, to be published in the Astronomical Journa
Searching for gravitational wave burst in PTA data with piecewise linear functions
Transient gravitational waves (aka gravitational wave bursts) within the
nanohertz frequency band could be generated by a variety of astrophysical
phenomena such as the encounter of supermassive black holes, the kinks or cusps
in cosmic strings, or other as-yet-unknown physical processes. Radio-pulses
emitted from millisecond pulsars could be perturbed by passing gravitational
waves, hence the correlation of the perturbations in a pulsar timing array can
be used to detect and characterize burst signals with a duration of
years. We propose a fully Bayesian framework for the
analysis of the pulsar timing array data, where the burst waveform is
generically modeled by piecewise straight lines, and the waveform parameters in
the likelihood can be integrated out analytically. As a result, with merely
three parameters (in addition to those describing the pulsars' intrinsic and
background noise), one is able to efficiently search for the existence and the
sky location of {a burst signal}. If a signal is present, the posterior of the
waveform can be found without further Bayesian inference. We demonstrate this
model by analyzing simulated data sets containing a stochastic gravitational
wave background {and a burst signal generated by the parabolic encounter of two
supermassive black holes.Comment: 13 pages, 10 figure
SiO Emission in the Multi-Lobe Outflow associated with IRAS 16293-2422
We have mapped the thermal emission line of SiO (v = 0; J = 2-1) associated
with the quadrupolar molecular outflow driven by the very cold far-infrared
source IRAS 16293-2422. The SiO emission is significantly enhanced in the
northeastern red lobe and at the position ~50" east of the IRAS source. Strong
SiO emission observed at ~50" east of the IRAS source presents evidence for a
dynamical interaction between a part of the eastern blue lobe and the dense
ambient gas condensation, however, such an interaction is unlikely to be
responsible for producing the quadrupolar morphology. The SiO emission in the
northeastern red lobe shows the spatial and velocity structure similar to those
of the CO outflow, suggesting that the SiO emission comes from the molecular
outflow in the northeastern red lobe itself. The observed velocity structure is
reproduced by a simple spatio-kinematic model of bow shock with a shock
velocity of 19-24 km/s inclined by 30-45 deg from the plane of the sky. This
implies that the northeastern red lobe is independent of the eastern blue lobe
and that the quadrupolar structure is due to two separate bipolar outflows.
The SiO emission observed in the western red lobe has a broad pedestal shape
with low intensity. Unlike the SiO emission in the northeastern red lobe, the
spatial extent of the SiO emission in the western red lobe is restricted to its
central region. The spatial and velocity structures and the line profiles
suggest that three different types of the SiO emission are observed in this
outflow; the SiO emission arises from the interface between the outflowing gas
and the dense ambient gas clump, the SiO emission coming from the outflow lobe
itself, and the broad SiO emission with low intensity observed at the central
region of the outflow lobe.Comment: 14 pages, 6 figures (figures 1 and 4 are color), gzipped tar file, To
appear in the Ap
Disruption of Arp2/3 results in asymmetric structural plasticity of dendritic spines and progressive synaptic and behavioral abnormalities
Despite evidence for a strong genetic contribution to several major psychiatric disorders, individual candidate genes account for only a small fraction of these disorders, leading to the suggestion that multigenetic pathways may be involved. Several known genetic risk factors for psychiatric disease are related to the regulation of actin polymerization, which plays a key role in synaptic plasticity. To gain insight into and test the possible pathogenetic role of this pathway, we designed a conditional knock-out of the Arp2/3 complex, a conserved final output for actin signaling pathways that orchestrates de novo actin polymerization. Here we report that postnatal loss of the Arp2/3 subunit ArpC3 in forebrain excitatory neurons leads to an asymmetric structural plasticity of dendritic spines, followed by a progressive loss of spine synapses. This progression of synaptic deficits corresponds with an evolution of distinct cognitive, psychomotor, and social disturbances as the mice age. Together, these results point to the dysfunction of actin signaling, specifically that which converges to regulate Arp2/3, as an important cellular pathway that may contribute to the etiology of complex psychiatric disorders
Turbulence driven by outflow-blown cavities in the molecular cloud of NGC 1333
Outflows from young stellar objects have been identified as a possible source
of turbulence in molecular clouds. To investigate the relationship between
outflows, cloud dynamics and turbulence, we compare the kinematics of the
molecular gas associated with NGC 1333, traced in 13CO(1-0), with the
distribution of young stellar objects (YSOs) within. We find a velocity
dispersion of ~ 1-1.6 km/s in 13CO that does not significantly vary across the
cloud, and is uncorrelated with the number of nearby young stellar outflows
identified from optical and submillimeter observations. However, from velocity
channel maps we identify about 20 cavities or depressions in the 13CO intensity
of scales > 0.1-0.2 pc and velocity widths 1-3 km/s. The cavities exhibit limb
brightened rims in both individual velocity channel maps and position velocity
diagrams, suggesting that they are slowly expanding. We interpret these
cavities to be remnants of past YSO outflow activity: If these cavities are
presently empty, they would fill in on time scales of a million years. This can
exceed the lifetime of a YSO outflow phase, or the transit time of the central
star through the cavity, explaining the the absence of any clear correlation
between the cavities and YSO outflows. We find that the momentum and energy
deposition associated with the expansion of the cavities is sufficient to power
the turbulence in the cloud. In this way we conclude that the cavities are an
important intermediary step between the conversion of YSO outflow energy and
momentum into cloud turbulent motions.Comment: Accepted for publication in ApJ. Check out
http://astro.pas.rochester.edu/~aquillen/coolpics.html for channel map and
PosVel movies of N133
Adipocyte-specific protein tyrosine phosphatase 1B deletion increases lipogenesis, adipocyte cell size and is a minor regulator of glucose homeostasis
Peer reviewedPublisher PD
Evaluating consumptive and nonconsumptive predator effects on prey density using field time‐series data
Determining the degree to which predation affects prey abundance in natural communities constitutes a key goal of ecological research. Predators can affect prey through both consumptive effects (CEs) and nonconsumptive effects (NCEs), although the contributions of each mechanism to the density of prey populations remain largely hypothetical in most systems. Common statistical methods applied to time‐series data cannot elucidate the mechanisms responsible for hypothesized predator effects on prey density (e.g., differentiate CEs from NCEs), nor can they provide parameters for predictive models. State‐space models (SSMs) applied to time‐series data offer a way to meet these goals. Here, we employ SSMs to assess effects of an invasive predatory zooplankter, Bythotrephes longimanus, on an important prey species, Daphnia mendotae, in Lake Michigan. We fit mechanistic models in an SSM framework to seasonal time series (1994–2012) using a recently developed, maximum‐likelihood–based optimization method, iterated filtering, which can overcome challenges in ecological data (e.g., nonlinearities, measurement error, and irregular sampling intervals). Our results indicate that B. longimanus strongly influences D. mendotae dynamics, with mean annual peak densities of B. longimanus observed in Lake Michigan estimated to cause a 61% reduction in D. mendotae population growth rate and a 59% reduction in peak biomass density. Further, the observed B. longimanus effect is most consistent with an NCE via reduced birth rates. The SSM approach also provided estimates for key biological parameters (e.g., demographic rates) and the contribution of dynamic stochasticity and measurement error. Our study therefore provides evidence derived directly from survey data that the invasive zooplankter B. longimanus is affecting zooplankton demographics and offer parameter estimates needed to inform predictive models that explore the effect of B. longimanus under different scenarios, such as climate change.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/148243/1/ecy2583-sup-0001-AppendixS1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/148243/2/ecy2583_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/148243/3/ecy2583.pd
- …