62 research outputs found

    Wigner's Dynamical Transition State Theory in Phase Space: Classical and Quantum

    Full text link
    A quantum version of transition state theory based on a quantum normal form (QNF) expansion about a saddle-centre-...-centre equilibrium point is presented. A general algorithm is provided which allows one to explictly compute QNF to any desired order. This leads to an efficient procedure to compute quantum reaction rates and the associated Gamov-Siegert resonances. In the classical limit the QNF reduces to the classical normal form which leads to the recently developed phase space realisation of Wigner's transition state theory. It is shown that the phase space structures that govern the classical reaction d ynamicsform a skeleton for the quantum scattering and resonance wavefunctions which can also be computed from the QNF. Several examples are worked out explicitly to illustrate the efficiency of the procedure presented.Comment: 132 pages, 31 figures, corrected version, Nonlinearity, 21 (2008) R1-R11

    Coverage with k-transmitters in the presence of obstacles

    Get PDF
    For a fixed integer k ≥ 0, a k-transmitter is an omnidirectional wireless transmitter with an infinite broadcast range that is able to penetrate up to k “walls”, represented as line segments in the plane. We develop lower and upper bounds for the number of k-transmitters that are necessary and sufficient to cover a given collection of line segments, polygonal chains and polygons.Postprint (published version

    Effect of alirocumab on mortality after acute coronary syndromes. An analysis of the ODYSSEY OUTCOMES randomized clinical trial

    Get PDF
    Background: Previous trials of PCSK9 (proprotein convertase subtilisin-kexin type 9) inhibitors demonstrated reductions in major adverse cardiovascular events, but not death. We assessed the effects of alirocumab on death after index acute coronary syndrome. Methods: ODYSSEY OUTCOMES (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab) was a double-blind, randomized comparison of alirocumab or placebo in 18 924 patients who had an ACS 1 to 12 months previously and elevated atherogenic lipoproteins despite intensive statin therapy. Alirocumab dose was blindly titrated to target achieved low-density lipoprotein cholesterol (LDL-C) between 25 and 50 mg/dL. We examined the effects of treatment on all-cause death and its components, cardiovascular and noncardiovascular death, with log-rank testing. Joint semiparametric models tested associations between nonfatal cardiovascular events and cardiovascular or noncardiovascular death. Results: Median follow-up was 2.8 years. Death occurred in 334 (3.5%) and 392 (4.1%) patients, respectively, in the alirocumab and placebo groups (hazard ratio [HR], 0.85; 95% CI, 0.73 to 0.98; P=0.03, nominal P value). This resulted from nonsignificantly fewer cardiovascular (240 [2.5%] vs 271 [2.9%]; HR, 0.88; 95% CI, 0.74 to 1.05; P=0.15) and noncardiovascular (94 [1.0%] vs 121 [1.3%]; HR, 0.77; 95% CI, 0.59 to 1.01; P=0.06) deaths with alirocumab. In a prespecified analysis of 8242 patients eligible for ≥3 years follow-up, alirocumab reduced death (HR, 0.78; 95% CI, 0.65 to 0.94; P=0.01). Patients with nonfatal cardiovascular events were at increased risk for cardiovascular and noncardiovascular deaths (P<0.0001 for the associations). Alirocumab reduced total nonfatal cardiovascular events (P<0.001) and thereby may have attenuated the number of cardiovascular and noncardiovascular deaths. A post hoc analysis found that, compared to patients with lower LDL-C, patients with baseline LDL-C ≥100 mg/dL (2.59 mmol/L) had a greater absolute risk of death and a larger mortality benefit from alirocumab (HR, 0.71; 95% CI, 0.56 to 0.90; Pinteraction=0.007). In the alirocumab group, all-cause death declined wit h achieved LDL-C at 4 months of treatment, to a level of approximately 30 mg/dL (adjusted P=0.017 for linear trend). Conclusions: Alirocumab added to intensive statin therapy has the potential to reduce death after acute coronary syndrome, particularly if treatment is maintained for ≥3 years, if baseline LDL-C is ≥100 mg/dL, or if achieved LDL-C is low. Clinical Trial Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT01663402

    Spontaneous CD30 mRNA expression in peripheral blood mononuclear cells from atopic patients with high IgE serum levels

    No full text
    CD30 is a surface molecule which can be expressed by normal B and T lymphocytes. Our study focused on the CD30 expression and release compared with IL-4 expression as well as CD23-α/β in peripheral blood mononuclear cells (PBMC) from atopic subjects and controls. Data showed a lack of CD30 mRNA expression in the PBMC of control subjects, while it was significantly expressed in those of 6/11 atopic patients. No substantial amounts of spontaneous soluble CD30 (sCD30) could be detected by ELISA in both atopic and control groups. Interestingly, CD30 mRNA expression in PBMC of allergic patients was positively correlated with IgE serum levels (r = 0·79, P = 0·003). Studies on purified B cells showed that CD30 was expressed mainly in CD19+B cells of allergic patients. These data suggest highly a potential functional significance of the CD30 molecule in IgE response during allergic diseases
    corecore