9 research outputs found

    Identification of simple sequence repeat markers for sweetpotato weevil resistance

    Get PDF
    The development of sweetpotato [Ipomoea batatas (L.) Lam] germplasm with resistance to sweetpotato weevil (SPW) requires an understanding of the biochemical and genetic mechanisms of resistance to optimize crop resistance. The African sweetpotato landrace, ‘New Kawogo’, was reported to be moderately resistant to two species of SPW, Cylas puncticollis and Cylas brunneus. Resistance has been associated with the presence of hydroxycinnamic acids esters (HCAs), but the underlying genetic basis remains unknown. To determine the genetic basis of this resistance, a bi-parental sweetpotato population from a cross between the moderately resistant, white-fleshed ‘New Kawogo’ and the highly susceptible, orange-fleshed North American variety ‘Beauregard’ was evaluated for SPW resistance and genotyped with simple sequence repeat (SSR) markers to identify weevil resistance loci. SPW resistance was measured on the basis of field storage root SPW damage severity and total HCA ester concentrations. Moderate broad sense heritability (H2 = 0.49) was observed for weevil resistance in the population. Mean genotype SPW severity scores ranged from 1.0 to 9.0 and 25 progeny exhibited transgressive segregation for SPW resistance. Mean genotype total HCA ester concentrations were significantly different (P < 0.0001). A weak but significant correlation (r = 0.103, P = 0.015) was observed between total HCA ester concentration and SPW severity. A total of five and seven SSR markers were associated with field SPW severity and total HCA ester concentration, respectively. Markers IBS11, IbE5 and IbJ544b showed significant association with both field and HCA-based resistance, representing potential markers for the development of SPW resistant sweetpotato cultivars

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Segregation of Hydroxycinnamic Acid Esters Mediating Sweetpotato Weevil Resistance in Storage Roots of Sweetpotato

    No full text
    Resistance to sweetpotato weevils (Cylas spp.) has been identified in several sweetpotato (Ipomoea batatas) landraces from East Africa and shown to be conferred by hydroxycinnamic acids that occur on the surface of storage roots. The segregation of resistance in this crop is unknown and could be monitored using these chemical traits as markers for resistance in F1 offspring from breeding programs. For the first time in a segregating population, we quantified the plant chemicals that confer resistance and evaluated levels of insect colonization of the same progeny in field and laboratory studies. We used a bi-parental mapping population of 287 progenies from a cross between I. batatas ‘New Kawogo,’ a weevil resistant Ugandan landrace and I. batatas ‘Beauregard’ a North American orange-fleshed and weevil susceptible cultivar. The progenies were evaluated for resistance to sweetpotato weevil, Cylas puncticollis at three field locations that varied climatically and across two seasons to determine how environment and location influenced resistance. To augment our field open-choice resistance screening, each clone was also evaluated in a no choice experiment with weevils reared in the laboratory. Chemical analysis was used to determine whether differences in resistance to weevils were associated with plant compounds previously identified as conferring resistance. We established linkage between field and laboratory resistance to Cylas spp. and sweetpotato root chemistry. The data also showed that resistance in sweetpotato was mediated by root chemicals in most but not all cases. Multi-location trials especially from Serere data provided evidence that the hydroxycinnamic acid esters are produced constitutively within the plants in different clonal genotypes and that the ecological interaction of these chemicals in sweetpotato with weevils confers resistance. Our data suggest that these chemical traits are controlled quantitatively and that ultimately a knowledge of the genetics of resistance will facilitate management of these traits, enhance our understanding of the mechanistic basis of resistance and speed the development of new sweetpotato varieties with resistance to sweetpotato weevil

    The Potential of Sweetpotato as a Functional Food in Sub-Saharan Africa and Its Implications for Health: A Review

    No full text
    Increasing urbanization in developing countries has resulted in busier lifestyles, accompanied by consumption of fast foods. The consequence is an increased prevalence in noncommunicable diseases (NCDs). Food-based approaches would be cheaper and more sustainable in reducing these NCDs compared to drugs, which may have side effects. Studies have suggested that consuming functional foods could potentially lower NCD risks. Sweetpotato is regarded as a functional food because it contains bioactive compounds. Recently, sweetpotato has gained attention in sub-Saharan Africa (SSA), but research has focused on its use in alleviating micronutrient deficiencies such as vitamin A deficiency, particularly the orange-fleshed variety of sweetpotato. Some studies conducted in other parts of the world have investigated sweetpotato as a functional food. There is a need to characterize the sweetpotato varieties in SSA and determine how processing affects their bioactive components. This review highlights some of the studies conducted in various parts of the world on the functionality of sweetpotato, its bioactive compounds, and how these are influenced by processing. In addition, the potential health benefits imparted by sweetpotato are expounded. The knowledge gaps that remain in these studies are also addressed, focusing on how they can direct sweetpotato research in SSA

    Household Processing Methods and Their Impact on Bioactive Compounds and Antioxidant Activities of Sweetpotato Genotypes of Varying Storage Root Flesh Colours

    No full text
    Sweetpotato storage roots, peeled and unpeeled, of varying flesh colours (white, cream, yellow, pale orange, deep orange, and purple) were spectrophotometrically evaluated for their bioactive compounds and antioxidant activities. Roots were boiled, steamed, baked, fried, or microwaved. The unpeeled roots had relatively higher (p p < 0.001), except the deep-orange-fleshed genotype, in which frying slightly increased carotenoids from 269.81 to 304.74 µg/g. Microwaving retained 69% vitamin C in the cream-fleshed one, the highest among the cooking methods. Anthocyanins decreased with baking and frying in the purple-fleshed one but increased with other methods; microwaving being highest at 13.9% (17.43 mg/g). While the 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid antioxidant activity decreased with all cooking techniques in some genotypes, ferricyanide-reducing antioxidant potential increased. The retention of bioactive compounds in sweetpotato storage roots depends on the processing method. Thus, to obtain the most health benefits, consumers should use different cooking methods but retain the peels

    Targeting market segment needs with public-good crop breeding investments: A case study with potato and sweetpotato focused on poverty alleviation, nutrition and gender

    No full text
    Crop breeding programs have often focused on the release of new varieties that target yield improvement to achieve food security and reduce poverty. While continued investments in this objective are justified, there is a need for breeding programs to be increasingly more demand-driven and responsive to the changing customer preferences and population dynamics. This paper analyses the responsiveness of global potato and sweetpotato breeding programs pursued by the International Potato Center (CIP) and its partners to three major development indicators: poverty, malnutrition and gender. The study followed a seed product market segmentation blueprint developed by the Excellence in Breeding platform (EiB) to identify, describe, and estimate the sizes of the market segments at subregional levels. We then estimated the potential poverty and nutrition impacts of investments in the respective market segments. Further, we employed the G+ tools involving multidisciplinary workshops to evaluate the gender-responsiveness of the breeding programs. Our analysis reveals that future investments in breeding programs will achieve greater impacts by developing varieties for market segments and pipelines that have more poor rural people, high stunting rates among children, anemia prevalence among women of reproductive age, and where there is high vitamin A deficiency. In addition, breeding strategies that reduce gender inequality and enhance appropriate change of gender roles (hence gender transformative) are also required

    Quantitative trait loci and differential gene expression analyses reveal the genetic basis for negatively associated β-carotene and starch content in hexaploid sweetpotato [Ipomoea batatas (L.) Lam.]

    No full text
    Key message: β-Carotene content in sweetpotato is associated with the Orange and phytoene synthase genes; due to physical linkage of phytoene synthase with sucrose synthase, β-carotene and starch content are negatively correlated. Abstract: In populations depending on sweetpotato for food security, starch is an important source of calories, while β-carotene is an important source of provitamin A. The negative association between the two traits contributes to the low nutritional quality of sweetpotato consumed, especially in sub-Saharan Africa. Using a biparental mapping population of 315 F progeny generated from a cross between an orange-fleshed and a non-orange-fleshed sweetpotato variety, we identified two major quantitative trait loci (QTL) on linkage group (LG) three (LG3) and twelve (LG12) affecting starch, β-carotene, and their correlated traits, dry matter and flesh color. Analysis of parental haplotypes indicated that these two regions acted pleiotropically to reduce starch content and increase β-carotene in genotypes carrying the orange-fleshed parental haplotype at the LG3 locus. Phytoene synthase and sucrose synthase, the rate-limiting and linked genes located within the QTL on LG3 involved in the carotenoid and starch biosynthesis, respectively, were differentially expressed in Beauregard versus Tanzania storage roots. The Orange gene, the molecular switch for chromoplast biogenesis, located within the QTL on LG12 while not differentially expressed was expressed in developing roots of the parental genotypes. We conclude that these two QTL regions act together in a cis and trans manner to inhibit starch biosynthesis in amyloplasts and enhance chromoplast biogenesis, carotenoid biosynthesis, and accumulation in orange-fleshed sweetpotato. Understanding the genetic basis of this negative association between starch and β-carotene will inform future sweetpotato breeding strategies targeting sweetpotato for food and nutritional security
    corecore