3,680 research outputs found

    High level expression of a glutamate-gated chloride channel gene in reproductive tissues of Brugia malayi may explain the sterilizing effect of ivermectin on filarial worms

    Get PDF
    AbstractGlutamate-gated chloride channels (GluCl) are targets for avermectin/milbemycin (A/M) anthelmintics such as ivermectin that cause paralysis of somatic and pharyngeal muscles in gastrointestinal nematodes. Ivermectin is useful for onchocerciasis control programs because of its activity against microfilariae that often cause ocular disease and severe dermatitis. However, mechanisms responsible for reduced microfilaria production by adult worms following ivermectin treatment are poorly understood. We synthesized subunit-specific RNA probes for the Brugia malayi GluCl gene avr-14 (BmAVR-14) to localize expression of this gene in adult filarial worms. Both subunits of BmAVR-14 exhibited very similar expression patterns. In female worms, strong expression signals were detected in the ovary, developing embryos and lateral hypodermal chords, with moderate expression in the uterus wall adjacent to stretched microfilariae. These genes were also highly expressed in adult male worms (in spermatogonia, in the wall of the vas deferens, and in the lateral chords, but not in mature spermatozoa). In addition, avr-14 was highly expressed in somatic muscles adjacent to the terminal end of the vas deferens which contains mature sperm. These results show that avr-14 is highly expressed in B. malayi developing embryos and reproductive tissues, and they provide evidence for the involvement of GluCl in gamete production and embryogenesis in filarial worms. This may explain the observed suppression of microfilaria (Mf) production by female worms following treatment with avermectin/milbemycin anthelmintics

    Antibody responses to Brugia malayi antigens induced by DNA vaccination

    Get PDF
    BACKGROUND: DNA vaccination is a convenient means of immunizing animals with recombinant parasite antigens. DNA delivery methods are believed to affect the qualitative nature of immune responses to DNA vaccines in ways that may affect their protective activity. However, relatively few studies have directly compared immune responses to plasmids encoding the same antigens after injection by different routes. Therefore, the purpose of this study was to explore the influence of the route of administration on antibody responses to plasmids encoding antigens from the filarial nematode parasite Brugia malayi. METHODS: Four B. malayi genes and partial genes encoding paramyosin (BM5), heat shock protein (BMHSP-70), intermediate filament (BMIF) and a serodiagnostic antigen (BM14) were inserted in eukaryotic expression vectors (pJW4303 and pCRâ„¢3.1). BALB/c mice were immunized with individual recombinant plasmids or with a cocktail of all four plasmids by intramuscular injection (IM) or by gene gun-intradermal inoculation (GG). Antibody responses to recombinant antigens were measured by ELISA. Mean IgG1 to IgG2a antibody ratios were used as an indicator of Th1 or Th2 bias in immune responses induced with particular antigens by IM or GG immunization. The statistical significance of group differences in antibody responses was assessed by the non-parametric Kruskal-Wallis test. RESULTS: Mice produced antibody responses to all four filarial antigens after DNA vaccination by either the IM or GG route. Antibody responses to BM5 paramyosin were strongly biased toward IgG1 with lower levels of IgG2a after GG vaccination, while IM vaccination produced dominant IgG2a antibody responses. Antibody responses were biased toward IgG1 after both IM and GG immunization with BMIF, but antibodies were biased toward IgG2a after IM and GG vaccination with BMHSP-70 and BM14. Animals injected with a mixture of four recombinant plasmid DNAs produced antibodies to all four antigens. CONCLUSIONS: Our results show that monovalent and polyvalent DNA vaccination successfully induced antibody responses to a variety of filarial antigens. However, antibody responses to different antigens varied in magnitude and with respect to isotype bias. The isotype bias of antibody responses following DNA vaccination can be affected by route of administration and by intrinsic characteristics of individual antigens

    Performance evaluation of on-chip wavelength conversion based on InP/In1−x_{1-x}Gax_xAsy_yP1−y_{1-y} semiconductor waveguide platforms

    Get PDF
    We propose and design the high confinement InP/In1-xGaxAsyP1-y semiconductor waveguides and report the results of effective wavelength conversion based on this platform. Efficient confinement and mode field area fluctuation at different wavelength is analyzed to achieve the high nonlinear coefficient. The numerical results show that nearly zero phase-mismatch condition can be satisfied through dispersion tailoring of InP/In1-xGaxAsyP1-y waveguides, and the wavelength conversion ranging over 40 nm with the maximum conversion efficiency -26.3 dB is achieved for fixing pump power 100 mW. Meanwhile, the influences of the doping parameter y and pumping wavelength on the bandwidth and conversion efficiency are also discussed and optimized. It is indicated the excellent optical properties of the InP/In1-xGaxAsyP1-y waveguides and pave the way towards direct integration telecom band devices on stand semiconductor platforms.Comment: 21 page

    Transcriptomes and pathways associated with infectivity, survival and immunogenicity in Brugia malayi L3

    Get PDF
    Background: Filarial nematode parasites cause serious diseases such as elephantiasis and river blindness in humans, and heartworm infections in dogs. Third stage filarial larvae (L3) are a critical stage in the life cycle of filarial parasites, because this is the stage that is transmitted by arthropod vectors to initiate infections in mammals. Improved understanding of molecular mechanisms associated with this transition may provide important leads for development of new therapies and vaccines to prevent filarial infections. This study explores changes in gene expression associated with the transition of Brugia malayi third stage larvae (BmL3) from mosquitoes into mammalian hosts and how these changes are affected by radiation. Radiation effects are especially interesting because irradiated L3 induce partial immunity to filarial infections. The underlying molecular mechanisms responsible for the efficacy of such vaccines are unkown. Results: Expression profiles were obtained using a new filarial microarray with 18, 104 64-mer elements. 771 genes were identified as differentially expressed in two-way comparative analyses of the three L3 types. 353 genes were up-regulated in mosquito L3 (L3i) relative to cultured L3 (L3c). These genes are important for establishment of filarial infections in mammalian hosts. Other genes were up-regulated in L3c relative to L3i (234) or irradiated L3 (L3ir) (22). These culture-induced transcripts include key molecules required for growth and development. 165 genes were up-regulated in L3ir relative to L3c; these genes encode highly immunogenic proteins and proteins involved in radiation repair. L3ir and L3i have similar transcription profiles for genes that encode highly immunogenic proteins, antioxidants and cuticle components. Conclusion: Changes in gene expression that normally occur during culture under conditions that support L3 development and molting are prevented or delayed by radiation. This may explain the enhanced immunogenicity of L3ir. Gene Ontology and KEGG analyses revealed altered pathways between L3 types. Energy and "immune pathways" are up-regulated and may be needed for L3i invasion and survival, while growth and development are priorities for L3c. This study has improved our understanding of molecules involved in parasite invasion and immune evasion, potential targets of protective immunity, and molecules required for parasite growth and development

    Atomically Intimate Contact between Solid Electrolytes and Electrodes for Li Batteries

    Get PDF
    Solid electrolytes, as a promising replacement for the flammable liquid electrolyte in conventional Li-ion batteries, may greatly alleviate the safety issues and improve the energy density. However, mainstream electrodes are also solid. If solid electrolytes were employed, creating intimate electrode-electrolyte contact similar to that between solid and liquid would be quite difficult. Here we discovered that, by forming epitaxial interfaces, such a seamless solid-solid contact can happen between two widely studied systems: the Li-rich layered electrode and perovskite solid electrolyte. Atomic-resolution electron microscopy unambiguously demonstrated that the former can be epitaxially embedded into the latter. The solid-solid composite electrode formed this way exhibited a rate capability no lower than the one based on solid-liquid contact. With the periodic misfit dislocations reconciling structural differences, such epitaxy can tolerate large lattice mismatch, and thus may occur between many layered electrodes and perovskite solid electrolytes

    Subjective measures on task complexity using touchscreens in flight operations

    Get PDF
    https://ergonomics.org.uk/events-calendar/ehf2024.htmlThe following preliminary study uses subjective measures of situational awareness, workload, and system usability to assess the effect of touchscreen flight deck displays in simple and complex flying environments during a simulated flight task. Eighteen participants were evaluated whilst flying a simulated aircraft, conducting both simple and complex flight operations. Results showed that situational awareness improved, and perceived workload was maintained, when task complexity was increased during touchscreen interaction on the flight deck. This was likely driven by touchscreens providing increased attentional supply. This improves the flight deck human-machine interface (HMI) from a pilot-centred perspective by improving access to task-relevant information. There was no significant change in levels of touchscreen usability as flight task complexity increased, once again ratifying the use of touchscreens in assisting cognitive function in some task types. The application and limitations of these findings is discussed

    Be Stars in the Open Cluster NGC 6830

    Get PDF
    We report the discovery of 2 new Be stars, and re-identify one known Be star in the open cluster NGC 6830. Eleven H-alpha emitters were discovered using the H-alpha imaging photometry of the Palomar Transient Factory Survey. Stellar membership of the candidates was verified with photometric and kinematic information using 2MASS data and proper motions. The spectroscopic confirmation was carried out by using the Shane 3-m telescope at Lick observatory. Based on their spectral types, three H-alpha emitters were confirmed as Be stars with H-alpha equivalent widths > -10 Angstrom. Two objects were also observed by the new spectrograph SED-Machine on the Palomar 60 inch Telescope. The SED-Machine results show strong H-alpha emission lines, which are consistent with the results of the Lick observations. The high efficiency of the SED-Machine can provide rapid observations for Be stars in a comprehensive survey in the future.Comment: 11 pages, 8 figures, AJ in pres
    • …
    corecore