68 research outputs found

    History-dependent relaxation and the energy scale of correlation in the Electron-Glass

    Full text link
    We present an experimental study of the energy-relaxation in Anderson-insulating indium-oxide films excited far from equilibrium. In particular, we focus on the effects of history on the relaxation of the excess conductance dG. The natural relaxation law of dG is logarithmic, namely dG=-log(t). This may be observed over more than five decades following, for example, cool-quenching the sample from high temperatures. On the other hand, when the system is excited from a state S_{o} in which it has not fully reached equilibrium to a state S_{n}, the ensuing relaxation law is logarithmic only over time t shorter than the time t_{w} it spent in S_{o}. For times t>t_{w} dG(t) show systematic deviation from the logarithmic dependence. It was previously shown that when the energy imparted to the system in the excitation process is small, this leads to dG=P(t/t_{w}) (simple-aging). Here we test the conjecture that `simple-aging' is related to a symmetry in the relaxation dynamics in S_{o} and S_{n}. This is done by using a new experimental procedure that is more sensitive to deviations in the relaxation dynamics. It is shown that simple-aging may still be obeyed (albeit with a modified P(t/t_{w})) even when the symmetry of relaxation in S_{o} and S_{n} is perturbed by a certain degree. The implications of these findings to the question of aging, and the energy scale associated with correlations are discussed

    Monte-Carlo Simulations of the Dynamical Behavior of the Coulomb Glass

    Get PDF
    We study the dynamical behavior of disordered many-particle systems with long-range Coulomb interactions by means of damage-spreading simulations. In this type of Monte-Carlo simulations one investigates the time evolution of the damage, i.e. the difference of the occupation numbers of two systems, subjected to the same thermal noise. We analyze the dependence of the damage on temperature and disorder strength. For zero disorder the spreading transition coincides with the equilibrium phase transition, whereas for finite disorder, we find evidence for a dynamical phase transition well below the transition temperature of the pure system.Comment: 10 pages RevTeX, 8 Postscript figure

    Electrical transport studies of quench condensed Bi films at the initial stage of film growth: Structural transition and the possible formation of electron droplets

    Full text link
    The electrical transport properties of amorphous Bi films prepared by sequential quench deposition have been studied in situ. A superconductor-insulator (S-I) transition was observed as the film was made increasingly thicker, consistent with previous studies. Unexpected behavior was found at the initial stage of film growth, a regime not explored in detail prior to the present work. As the temperature was lowered, a positive temperature coefficient of resistance (dR/dT > 0) emerged, with the resistance reaching a minimum before the dR/dT became negative again. This behavior was accompanied by a non-linear and asymmetric I-V characteristic. As the film became thicker, conventional variable-range hopping (VRH) was recovered. We attribute the observed crossover in the electrical transport properties to an amorphous to granular structural transition. The positive dR/dT found in the amorphous phase of Bi formed at the initial stage of film growth was qualitatively explained by the formation of metallic droplets within the electron glass.Comment: 7 pages, 6 figure

    Multidimensional Conservation Laws: Overview, Problems, and Perspective

    Full text link
    Some of recent important developments are overviewed, several longstanding open problems are discussed, and a perspective is presented for the mathematical theory of multidimensional conservation laws. Some basic features and phenomena of multidimensional hyperbolic conservation laws are revealed, and some samples of multidimensional systems/models and related important problems are presented and analyzed with emphasis on the prototypes that have been solved or may be expected to be solved rigorously at least for some cases. In particular, multidimensional steady supersonic problems and transonic problems, shock reflection-diffraction problems, and related effective nonlinear approaches are analyzed. A theory of divergence-measure vector fields and related analytical frameworks for the analysis of entropy solutions are discussed.Comment: 43 pages, 3 figure

    Zu Martin Bubers Sammlung ‚Die Gesellschaft‘

    No full text
    • …
    corecore