19 research outputs found

    Multimodal MRI as a diagnostic biomarker for amyotrophic lateral sclerosis

    Full text link
    Objective Reliable biomarkers for amyotrophic lateral sclerosis ( ALS ) are needed, given the clinical heterogeneity of the disease. Here, we provide proof‐of‐concept for using multimodal magnetic resonance imaging ( MRI ) as a diagnostic biomarker for ALS . Specifically, we evaluated the added diagnostic utility of proton magnetic resonance spectroscopy ( MRS ) to diffusion tensor imaging ( DTI ). Methods Twenty‐nine patients with ALS and 30 age‐ and gender‐matched healthy controls underwent brain MRI which used proton MRS including spectral editing techniques to measure γ‐aminobutyric acid ( GABA ) and DTI to measure fractional anisotropy of the corticospinal tract. Data were analyzed using logistic regression, t ‐tests, and generalized linear models with leave‐one‐out analysis to generate and compare the resulting receiver operating characteristic ( ROC ) curves. Results The diagnostic accuracy is significantly improved when the MRS data were combined with the DTI data as compared to the DTI data only (area under the ROC curves ( AUC ) = 0.93 vs. AUC  = 0.81; P  = 0.05). The combined MRS and DTI data resulted in sensitivity of 0.93, specificity of 0.85, positive likelihood ratio of 6.20, and negative likelihood ratio of 0.08 whereas the DTI data only resulted in sensitivity of 0.86, specificity of 0.70, positive likelihood ratio of 2.87, and negative likelihood ratio of 0.20. Interpretation Combining multiple advanced neuroimaging modalities significantly improves disease discrimination between ALS patients and healthy controls. These results provide an important step toward advancing a multimodal MRI approach along the diagnostic test development pathway for ALS.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106065/1/acn330.pd

    Multidetector computed tomography angiography for assessment of in-stent restenosis: meta-analysis of diagnostic performance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multi-detector computed tomography angiography (MDCTA)of the coronary arteries after stenting has been evaluated in multiple studies.</p> <p>The purpose of this study was to perform a structured review and meta-analysis of the diagnostic performance of MDCTA for the detection of in-stent restenosis in the coronary arteries.</p> <p>Methods</p> <p>A Pubmed and manual search of the literature on in-stent restenosis (ISR) detected on MDCTA compared with conventional coronary angiography (CA) was performed. Bivariate summary receiver operating curve (SROC) analysis, with calculation of summary estimates was done on a stent and patient basis. In addition, the influence of study characteristics on diagnostic performance and number of non-assessable segments (NAP) was investigated with logistic meta-regression.</p> <p>Results</p> <p>Fourteen studies were included. On a stent basis, Pooled sensitivity and specificity were 0.82(0.72–0.89) and 0.91 (0.83–0.96). Pooled negative likelihood ratio and positive likelihood ratio were 0.20 (0.13–0.32) and 9.34 (4.68–18.62) respectively. The exclusion of non-assessable stents and the strut thickness of the stents had an influence on the diagnostic performance. The proportion of non-assessable stents was influenced by the number of detectors, stent diameter, strut thickness and the use of an edge-enhancing kernel.</p> <p>Conclusion</p> <p>The sensitivity of MDTCA for the detection of in-stent stenosis is insufficient to use this test to select patients for further invasive testing as with this strategy around 20% of the patients with in-stent stenosis would be missed. Further improvement of scanner technology is needed before it can be recommended as a triage instrument in practice. In addition, the number of non-assessable stents is also high.</p

    A manually annotated Actinidia chinensis var. chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants

    Get PDF
    Most published genome sequences are drafts, and most are dominated by computational gene prediction. Draft genomes typically incorporate considerable sequence data that are not assigned to chromosomes, and predicted genes without quality confidence measures. The current Actinidia chinensis (kiwifruit) 'Hongyang' draft genome has 164\ua0Mb of sequences unassigned to pseudo-chromosomes, and omissions have been identified in the gene models

    Diagnostic accuracy of vaccine and vaccine excipient testing in the setting of allergic reactions to COVID-19 vaccines: A systematic review and meta-analysis

    Full text link
    For persons with immediate allergic reactions to mRNA COVID-19 vaccines, skin testing (ST) to the vaccine/excipients (polyethylene glycol[PEG] and polysorbate 80 [PS]) has been recommended, but has unknown accuracy. To assess vaccine/excipient ST accuracy in predicting all-severity immediate allergic reactions upon re-vaccination, systematic review was performed searching Medline, EMBASE, Web of Science, and the WHO global coronavirus database (inception-Oct 4, 2021) for studies addressing immediate (≤4 h post-vaccination) all-severity allergic reactions to 2nd mRNA COVID-19 vaccination in persons with 1st dose immediate allergic reactions. Cases evaluating delayed reactions, change of vaccine platform, or revaccination without vaccine/excipient ST were excluded. Meta-analysis of diagnostic testing accuracy was performed using Bayesian methods. The GRADE approach evaluated certainty of the evidence, and QUADAS-2 assessed risk of bias. Among 20 studies of mRNA COVID-19 first dose vaccine reactions, 317 individuals underwent 578 ST to any one or combination of vaccine, PEG, or PS, and were re-vaccinated with the same vaccine. Test sensitivity for either mRNA vaccine was 0.2 (95%CrI 0.01–0.52) and specificity 0.97 (95%CrI 0.9–1). PEG test sensitivity was 0.02 (95%CrI 0.00–0.07) and specificity 0.99 (95%CrI 0.96–1). PS test sensitivity was 0.03 (95%CrI 0.00–0.0.11) and specificity 0.97 (95%CrI 0.91–1). Combined for use of any of the 3 testing agents, sensitivity was 0.03 (95%CrI 0.00–0.08) and specificity was 0.98 (95%CrI 0.95–1.00). Certainty of evidence was moderate. ST has low sensitivity but high specificity in predicting all-severity repeat immediate allergic reactions to the same agent, among persons with 1st dose immediate allergic reactions to mRNA COVID-19 vaccines. mRNA COVID-19 vaccine or excipient ST has limited risk assessment utility.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/175406/1/all15571-sup-0003-supplementaryfigureE2.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/175406/2/all15571-sup-0002-supplementaryfigureE1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/175406/3/all15571_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/175406/4/all15571.pd
    corecore