13 research outputs found

    Effects of a ketogenic diet on body compostion and strength in trained women

    Full text link
    Background: The effect of ketogenic diets (KD) on body composition in different populations has been investigated. More recently, some have recommended that athletes adhere to ketogenic diets in order to optimize changes in body composition during training. However, there is less evidence related to trained women. We aimed to evaluate the effect of a KD on body composition and strength in trained women following an eight-week resistance training (RT) program. Methods: Twenty-one strength-trained women (27.6 ± 4.0 years; 162.1 ± 6.6 cm; 62.3 ± 7.8 kg; 23.7 ± 2.9 kg·m− 2) were randomly assigned to either a non-KD group (n = 11, NKD) or a KD group (n = 10, KD). Study outcomes included body composition as measured by dual-energy X-ray absorptiometry (DXA), strength levels measured using one maximum repetition (RM) in back squat and bench press (BP), and countermovement jump (CMJ) measured on a force plate. Results: A significant reduction in fat mass was observed in KD (− 1.1 ± 1.5 kg; P = 0.042; d = − 0.2) but not in NDK (0.3 ± 0.8 kg; P = 0.225; d = 0.1). No significant changes in fat-free mass were observed in KD (− 0.7 ± 1.7 kg; P = 0.202; d = − 0.1) or NKD (0.7 ± 1.1 kg; P = 0.074; d = 0.2), but absolute changes favored NKD. No significant changes in BP were observed in KD (1.5 ± 4.6 kg; P = 0.329; d = 0.2), although significant changes were noted in the squat and CMJ (5.6 ± 7.6 kg; P = 0.045; d = 0.5 and 2.2 ± 1.7 kg; P = 0.022; d = 0.6, respectively). In contrast, NKD showed significant increases in BP (4.8 ± 1.8; P \u3c 0.01; d = 0.7), squat (15.6 ± 5.4 kg; P = 0.005; d = 1.4) and CMJ (22.0 + 4.2 cm; P = 0.001; d = 0.5). Conclusions: Findings indicate that a KD may help to decrease fat mass and maintain fat-free mass after eight 8 weeks of RT in trained-women but is suboptimal for increasing fat-free mass

    Comparison of blood lactate and perceived exertion responses in two matched time-under- tension protocols

    Full text link
    Purpose: The aim of this study was to compare the concentration of blood lactate [bLa-] and the subjective perception of exertion of trained men in a moderate repetition protocol (MRP) versus a high repetition protocol (HRP) equated for time under tension. Methods: A sample of 40 healthy young men (aged, 23.2 ± 4.0 years; height, 177.3 ± 7.0 cm; BMI, 24.3 ± 2.2) performed two sessions of 8 sets of bicep curls with a one-week recovery interval between the trials. In the HRP protocol, 20 repetitions were performed with a cadence of 2 seconds of eccentric and 1 second of concentric, while in the MRP protocol 10 repetitions were performed with 4 seconds of eccentric and 2 seconds of concentric. Cadences were controlled by a metronome. At the beginning and end of each of the sessions, blood lactate was taken at 2, 15, and 30 minutes, and rating of perceived exertion (OMNI-RES) was assessed immediately after completion of each session. Results: There were [bLa-] differences between protocols in the MRP 2 min, (5.2 ±1.4); 15 min, (3.2 ±1.2); 30 min, (1.9 ±0.6); p\u3c 0.05, and the HRP 2 min, (6.1 ±1.6); 15 min, (3.7 ±1.1); 30 min, (2.2 ±0.6); p Conclusions: Training protocols with high times under tension promote substantial increases in metabolic stress, however, our findings indicate that HRP generates more [bLa-] than MRP. In addition, there were higher RPE values in the HRP protocol compared to MRP in single-joint exercises

    Effects of a ketogenic diet on body composition and strength in trained women

    Get PDF
    Background The effect of ketogenic diets (KD) on body composition in different populations has been investigated. More recently, some have recommended that athletes adhere to ketogenic diets in order to optimize changes in body composition during training. However, there is less evidence related to trained women. We aimed to evaluate the effect of a KD on body composition and strength in trained women following an eight-week resistance training (RT) program. Methods Twenty-one strength-trained women (27.6 ± 4.0 years; 162.1 ± 6.6 cm; 62.3 ± 7.8 kg; 23.7 ± 2.9 kg·m− 2) were randomly assigned to either a non-KD group (n = 11, NKD) or a KD group (n = 10, KD). Study outcomes included body composition as measured by dual-energy X-ray absorptiometry (DXA), strength levels measured using one maximum repetition (RM) in back squat and bench press (BP), and countermovement jump (CMJ) measured on a force plate. Results A significant reduction in fat mass was observed in KD (− 1.1 ± 1.5 kg; P = 0.042; d = − 0.2) but not in NDK (0.3 ± 0.8 kg; P = 0.225; d = 0.1). No significant changes in fat-free mass were observed in KD (− 0.7 ± 1.7 kg; P = 0.202; d = − 0.1) or NKD (0.7 ± 1.1 kg; P = 0.074; d = 0.2), but absolute changes favored NKD. No significant changes in BP were observed in KD (1.5 ± 4.6 kg; P = 0.329; d = 0.2), although significant changes were noted in the squat and CMJ (5.6 ± 7.6 kg; P = 0.045; d = 0.5 and 1.7 ± 1.9 cm; P = 0.022; d = 0.6, respectively). In contrast, NKD showed significant increases in BP (4.8 ± 1.8; P < 0.01; d = 0.7), squat (15.6 ± 5.4 kg; P = 0.005; d = 1.4) and CMJ (2.2 ± 1.7 cm; P = 0.001; d = 0.5). Conclusions Findings indicate that a KD may help to decrease fat mass and maintain fat-free mass after eight 8 weeks of RT in trained-women but is suboptimal for increasing fat-free mass
    corecore