193 research outputs found

    Deep active learning for autonomous navigation.

    Get PDF
    Imitation learning refers to an agent's ability to mimic a desired behavior by learning from observations. A major challenge facing learning from demonstrations is to represent the demonstrations in a manner that is adequate for learning and efficient for real time decisions. Creating feature representations is especially challenging when extracted from high dimensional visual data. In this paper, we present a method for imitation learning from raw visual data. The proposed method is applied to a popular imitation learning domain that is relevant to a variety of real life applications; namely navigation. To create a training set, a teacher uses an optimal policy to perform a navigation task, and the actions taken are recorded along with visual footage from the first person perspective. Features are automatically extracted and used to learn a policy that mimics the teacher via a deep convolutional neural network. A trained agent can then predict an action to perform based on the scene it finds itself in. This method is generic, and the network is trained without knowledge of the task, targets or environment in which it is acting. Another common challenge in imitation learning is generalizing a policy over unseen situation in training data. To address this challenge, the learned policy is subsequently improved by employing active learning. While the agent is executing a task, it can query the teacher for the correct action to take in situations where it has low confidence. The active samples are added to the training set and used to update the initial policy. The proposed approach is demonstrated on 4 different tasks in a 3D simulated environment. The experiments show that an agent can effectively perform imitation learning from raw visual data for navigation tasks and that active learning can significantly improve the initial policy using a small number of samples. The simulated test bed facilitates reproduction of these results and comparison with other approaches

    Evaluation of tolerance to lentiviral LV-RPE65 gene therapy vector after subretinal delivery in non-human primates.

    Get PDF
    Several approaches have been developed for gene therapy in RPE65-related Leber congenital amaurosis. To date, strategies that have reached the clinical stages rely on adeno-associated viral vectors and two of them documented limited long-term effect. We have developed a lentiviral-based strategy of RPE65 gene transfer that efficiently restored protein expression and cone function in RPE65-deficient mice. In this study, we evaluated the ocular and systemic tolerances of this lentiviral-based therapy (LV-RPE65) on healthy nonhuman primates (NHPs), without adjuvant systemic anti-inflammatory prophylaxis. For the first time, we describe the early kinetics of retinal detachment at 2, 4, and 7 days after subretinal injection using multimodal imaging in 5 NHPs. We revealed prolonged reattachment times in LV-RPE65-injected eyes compared to vehicle-injected eyes. Low- (n = 2) and high-dose (n = 2) LV-RPE65-injected eyes presented a reduction of the outer nuclear and photoreceptor outer segment layer thickness in the macula, that was more pronounced than in vehicle-injected eyes (n = 4). All LV-RPE65-injected eyes showed an initial perivascular reaction that resolved spontaneously within 14 days. Despite foveal structural changes, full-field electroretinography indicated that the overall retinal function was preserved over time and immunohistochemistry identified no difference in glial, microglial, or leucocyte ocular activation between low-dose, high-dose, and vehicle-injected eyes. Moreover, LV-RPE65-injected animals did not show signs of vector shedding or extraocular targeting, confirming the safe ocular restriction of the vector. Our results evidence a limited ocular tolerance to LV-RPE65 after subretinal injection without adjuvant anti-inflammatory prophylaxis, with complications linked to this route of administration necessitating to block this transient inflammatory event

    Soluble tumor necrosis factor receptor 1 and 2 predict outcomes in advanced chronic kidney disease : a prospective cohort study

    Get PDF
    Background : Soluble tumor necrosis factor receptors 1 (sTNFR1) and 2 (sTNFR2) have been associated to progression of renal failure, end stage renal disease and mortality in early stages of chronic kidney disease (CKD), mostly in the context of diabetic nephropathy. The predictive value of these markers in advanced stages of CKD irrespective of the specific causes of kidney disease has not yet been defined. In this study, the relationship between sTNFR1 and sTNFR2 and the risk for adverse cardiovascular events (CVE) and all-cause mortality was investigated in a population with CKD stage 4-5, not yet on dialysis, to minimize the confounding by renal function. Patients and methods : In 131 patients, CKD stage 4-5, sTNFR1, sTNFR2 were analysed for their association to a composite endpoint of all-cause mortality or first non-fatal CVE by univariate and multivariate Cox proportional hazards models. In the multivariate models, age, gender, CRP, eGFR and significant comorbidities were included as covariates. Results : During a median follow-up of 33 months, 40 events (30.5%) occurred of which 29 deaths (22.1%) and 11 (8.4%) first non-fatal CVE. In univariate analysis, the hazard ratios (HR) of sTNFR1 and sTNFR2 for negative outcome were 1.49 (95% confidence interval (CI): 1.28-1.75) and 1.13 (95% CI: 1.06-1.20) respectively. After adjustment for clinical covariables (age, CRP, diabetes and a history of cardiovascular disease) both sTNFRs remained independently associated to outcomes (HR: sTNFR1: 1.51, 95% CI: 1.30-1.77; sTNFR2: 1.13, 95% CI: 1.06-1.20). A subanalysis of the non-diabetic patients in the study population confirmed these findings, especially for sTNFR1. Conclusion : sTNFR1 and sTNFR2 are independently associated to all-cause mortality or an increased risk for cardiovascular events in advanced CKD irrespective of the cause of kidney disease

    Reduction of Severe Acute Maternal Morbidity and Maternal Mortality in Thyolo District, Malawi: The Impact of Obstetric Audit

    Get PDF
    BACKGROUND: Critical incident audit and feedback are recommended interventions to improve the quality of obstetric care. To evaluate the effect of audit at district level in Thyolo, Malawi, we assessed the incidence of facility-based severe maternal complications (severe acute maternal morbidity (SAMM) and maternal mortality) during two years of audit and feedback. METHODOLOGY/PRINCIPAL FINDINGS: Between September 2007 and September 2009, we included all cases of maternal mortality and SAMM that occurred in Thyolo District Hospital, the main referral facility in the area, using validated disease-specific criteria. During two- to three-weekly audit sessions, health workers and managers identified substandard care factors. Resulting recommendations were implemented and followed up. Feedback was given during subsequent sessions. A linear regression analysis was performed on facility-based severe maternal complications. During the two-year study period, 386 women were included: 46 died and 340 sustained SAMM, giving a case fatality rate of 11.9%. Forty-five cases out of the 386 inclusions were audited in plenary with hospital staff. There was a reduction of 3.1 women with severe maternal complications per 1000 deliveries in the district health facilities, from 13.5 per 1000 deliveries in the beginning to 10.4 per 1000 deliveries at the end of the study period. The incidence of uterine rupture and major obstetric hemorrhage reduced considerably (from 3.5 to 0.2 and from 5.9 to 2.6 per 1000 facility deliveries respectively). CONCLUSIONS: Our findings indicate that audit and feedback have the potential to reduce serious maternal complications including maternal mortality. Complications like major hemorrhage and uterine rupture that require relatively straightforward intrapartum emergency management are easier to reduce than those which require uptake of improved antenatal care (eclampsia) or timely intravenous medication or HIV-treatment (peripartum infections)

    Retinal Degeneration Progression Changes Lentiviral Vector Cell Targeting in the Retina

    Get PDF
    In normal mice, the lentiviral vector (LV) is very efficient to target the RPE cells, but transduces retinal neurons well only during development. In the present study, the tropism of LV has been investigated in the degenerating retina of mice, knowing that the retina structure changes during degeneration. We postulated that the viral transduction would be increased by the alteration of the outer limiting membrane (OLM). Two different LV pseudotypes were tested using the VSVG and the Mokola envelopes, as well as two animal models of retinal degeneration: light-damaged Balb-C and Rhodopsin knockout (Rho-/-) mice. After light damage, the OLM is altered and no significant increase of the number of transduced photoreceptors can be obtained with a LV-VSVG-Rhop-GFP vector. In the Rho-/- mice, an alteration of the OLM was also observed, but the possibility of transducing photoreceptors was decreased, probably by ongoing gliosis. The use of a ubiquitous promoter allows better photoreceptor transduction, suggesting that photoreceptor-specific promoter activity changes during late stages of photoreceptor degeneration. However, the number of targeted photoreceptors remains low. In contrast, LV pseudotyped with the Mokola envelope allows a wide dispersion of the vector into the retina (corresponding to the injection bleb) with preferential targeting of Müller cells, a situation which does not occur in the wild-type retina. Mokola-pseudotyped lentiviral vectors may serve to engineer these glial cells to deliver secreted therapeutic factors to a diseased area of the retina

    Differences in school environment, school policy and actions regarding overweight prevention between Dutch schools. A nationwide survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Schools are regarded as an important setting for the prevention of overweight. This study presents a nationally representative picture of the obesogenity of the school environment, the awareness of schools regarding overweight, and actions taken by the schools aiming at overweight prevention. In addition, differences between school levels were studied.</p> <p>Methods</p> <p>In 2006-2007, questionnaires were sent to all Dutch secondary schools (age group 12-18 years). Prevalences of the outcome variables were calculated for the schools in total and by school level. The association between school level and outcome variables were analysed by a log linear regression.</p> <p>Results</p> <p>Unhealthy foods and drinks are widely available at secondary schools. One third of the schools indicated that overweight has increased among students and half of the schools agreed that schools were (co)responsible for the prevention of overweight. Only 3% of the schools have a policy on overweight prevention. Small differences were observed between vocational education schools and higher education schools. The presence of vending machines did not differ by school level, but at vocational education schools, the content of the vending machines was less healthy.</p> <p>Conclusion</p> <p>This study describes the current situation at schools which is essential for the development and evaluation of future overweight prevention policies and interventions. In general, secondary schools are not actively involved in overweight prevention and the nutritional environment at most schools could be improved. The small differences between school levels do not give reason for a differential approach for a certain school level for overweight prevention.</p

    Lentiviral gene transfer of RPE65 rescues survival and function of cones in a mouse model of Leber congenital amaurosis.

    Get PDF
    BACKGROUND: RPE65 is specifically expressed in the retinal pigment epithelium and is essential for the recycling of 11-cis-retinal, the chromophore of rod and cone opsins. In humans, mutations in RPE65 lead to Leber congenital amaurosis or early-onset retinal dystrophy, a severe form of retinitis pigmentosa. The proof of feasibility of gene therapy for RPE65 deficiency has already been established in a dog model of Leber congenital amaurosis, but rescue of the cone function, although crucial for human high-acuity vision, has never been strictly proven. In Rpe65 knockout mice, photoreceptors show a drastically reduced light sensitivity and are subject to degeneration, the cone photoreceptors being lost at early stages of the disease. In the present study, we address the question of whether application of a lentiviral vector expressing the Rpe65 mouse cDNA prevents cone degeneration and restores cone function in Rpe65 knockout mice. METHODS AND FINDINGS: Subretinal injection of the vector in Rpe65-deficient mice led to sustained expression of Rpe65 in the retinal pigment epithelium. Electroretinogram recordings showed that Rpe65 gene transfer restored retinal function to a near-normal pattern. We performed histological analyses using cone-specific markers and demonstrated that Rpe65 gene transfer completely prevented cone degeneration until at least four months, an age at which almost all cones have degenerated in the untreated Rpe65-deficient mouse. We established an algorithm that allows prediction of the cone-rescue area as a function of transgene expression, which should be a useful tool for future clinical trials. Finally, in mice deficient for both RPE65 and rod transducin, Rpe65 gene transfer restored cone function when applied at an early stage of the disease. CONCLUSIONS: By demonstrating that lentivirus-mediated Rpe65 gene transfer protects and restores the function of cones in the Rpe65(-/-) mouse, this study reinforces the therapeutic value of gene therapy for RPE65 deficiencies, suggests a cone-preserving treatment for the retina, and evaluates a potentially effective viral vector for this purpose

    Corneal Transduction by Intra-Stromal Injection of AAV Vectors In Vivo in the Mouse and Ex Vivo in Human Explants

    Get PDF
    The cornea is a transparent, avascular tissue that acts as the major refractive surface of the eye. Corneal transparency, assured by the inner stroma, is vital for this role. Disruption in stromal transparency can occur in some inherited or acquired diseases. As a consequence, light entering the eye is blocked or distorted, leading to decreased visual acuity. Possible treatment for restoring transparency could be via viral-based gene therapy. The stroma is particularly amenable to this strategy due to its immunoprivileged nature and low turnover rate. We assayed the potential of AAV vectors to transduce keratocytes following intra-stromal injection in vivo in the mouse cornea and ex vivo in human explants. In murine and human corneas, we transduced the entire stroma using a single injection, preferentially targeted keratocytes and achieved long-term gene transfer (up to 17 months in vivo in mice). Of the serotypes tested, AAV2/8 was the most promising for gene transfer in both mouse and man. Furthermore, transgene expression could be transiently increased following aggression to the cornea

    Quantitative Comparison of Constitutive Promoters in Human ES cells

    Get PDF
    BACKGROUND: Constitutive promoters that ensure sustained and high level gene expression are basic research tools that have a wide range of applications, including studies of human embryology and drug discovery in human embryonic stem cells (hESCs). Numerous cellular/viral promoters that ensure sustained gene expression in various cell types have been identified but systematic comparison of their activities in hESCs is still lacking. METHODOLOGY/PRINCIPAL FINDINGS: We have quantitatively compared promoter activities of five commonly used constitutive promoters, including the human β-actin promoter (ACTB), cytomegalovirus (CMV), elongation factor-1α, (EF1α), phosphoglycerate kinase (PGK) and ubiquitinC (UbC) in hESCs. Lentiviral gene transfer was used to ensure stable integration of promoter-eGFP constructs into the hESCs genome. Promoter activities were quantitatively compared in long term culture of undifferentiated hESCs and in their differentiated progenies. CONCLUSION/SIGNIFICANCE: The ACTB, EF1α and PGK promoters showed stable activities during long term culture of undifferentiated hESCs. The ACTB promoter was superior by maintaining expression in 75-80% of the cells after 50 days in culture. During embryoid body (EB) differentiation, promoter activities of all five promoters decreased. Although the EF1α promoter was downregulated in approximately 50% of the cells, it was the most stable promoter during differentiation. Gene expression analysis of differentiated eGFP+ and eGFP- cells indicate that promoter activities might be restricted to specific cell lineages, suggesting the need to carefully select optimal promoters for constitutive gene expression in differentiated hESCs
    corecore