1,112 research outputs found
On the Underground Production of High Purity Germanium Detectors
Detectors based on high purity germanium (HPGe) are used in numerous deep underground experiments world-wide aiming at detecting rare events like double beta decay and interactions of dark matter. These detectors require the lowest possible background. A significant part of the background is due to radionuclides produced by cosmic-ray interactions with the germanium crystal. This report gives quantitative data on this activation and discusses the possible solutions. The first solution is to optimise the logistics during the crystal and detector fabrication so that the germanium spends a minimum time above ground. The second solution is to implement one or several (up to 12) production steps underground. The report also makes estimates on the future needs for germanium produced underground and the costs involved.JRC.D.4-Isotope measurement
Structural basis for converting a general transcription factor into an operon-specific virulence regulator
RfaH, a paralog of the general transcription factor NusG, is recruited to elongating RNA polymerase at specific regulatory sites. The X-ray structure of Escherichia coli RfaH reported here reveals two domains. The N-terminal domain displays high similarity to that of NusG. In contrast, the alpha-helical coiled-coil C domain, while retaining sequence similarity, is strikingly different from the beta barrel of NusG. To our knowledge, such an all-beta to all-alpha transition of the entire domain is the most extreme example of protein fold evolution known to date. Both N domains possess a vast hydrophobic cavity that is buried by the C domain in RfaH but is exposed in NusG. We propose that this cavity constitutes the RNA polymerase-binding site, which becomes unmasked in RfaH only upon sequence-specific binding to the nontemplate DNA strand that triggers domain dissociation. Finally, we argue that RfaH binds to the beta' subunit coiled coil, the major target site for the initiation sigma factors
Cosmogenic activation of Germanium and its reduction for low background experiments
Production of Co and Ge from stable isotopes of Germanium by
nuclear active component of cosmic rays is a principal background source for a
new generation of Ge double beta decay experiments like GERDA and
Majorana. The biggest amount of cosmogenic activity is expected to be produced
during transportation of either enriched material or already grown crystal.
In this letter properties and feasibility of a movable iron shield are
discussed. Activation reduction factor of about 10 is predicted by simulations
with SHIELD code for a simple cylindrical configuration. It is sufficient for
GERDA Phase II background requirements. Possibility of further increase of
reduction factor and physical limitations are considered. Importance of
activation reduction during Germanium purification and detector manufacturing
is emphasized.Comment: 10 pages, 3 tables, 6 figure
At the cutting edge against cancer: A perspective on immunoproteasome and immune checkpoints modulation as a potential therapeutic intervention
Simple Summary:& nbsp;Immunoproteasome plays a key role in the generation of antigenic peptides. Immune checkpoints therapy is a front-line treatment of advanced/metastatic tumors, and to improve its efficacy, a broader knowledge of the dynamics of antigen repertoire processing by cancer cells is mandatory. The scope of this review is to offer a picture of the role of immunoproteasome in antigen presentation to fuel the hypothesis of novel therapeutic interventions based on the modulation of this proteolytic complex and immune checkpoints.Immunoproteasome is a noncanonical form of proteasome with enzymological properties optimized for the generation of antigenic peptides presented in complex with class I MHC molecules. This enzymatic property makes the modulation of its activity a promising area of research. Nevertheless, immunotherapy has emerged as a front-line treatment of advanced/metastatic tumors providing outstanding improvement of life expectancy, even though not all patients achieve a long-lasting clinical benefit. To enhance the efficacy of the currently available immunotherapies and enable the development of new strategies, a broader knowledge of the dynamics of antigen repertoire processing by cancer cells is needed. Therefore, a better understanding of the role of immunoproteasome in antigen processing and of the therapeutic implication of its modulation is mandatory. Studies on the potential crosstalk between proteasome modulators and immune checkpoint inhibitors could provide novel perspectives and an unexplored treatment option for a variety of cancers
Scintillation proportional Xe counter with WLS fiber readout for low-energy X-rays
A gas Xe based scintillation proportional counter with cylindrical geometry
and wavelength shifting (WLS) fiber readout for X-rays of energy 0.5 - 100 keV
is proposed. With such a design large sizes and sensitive area of the counter
with a fairly well uniformity is possible. The counter could be used for "dark
matter" search and neutrino magnetic moment measurement and for detection of
small amounts or traces of radioactive elements in substances or environment.Comment: LaTeX 4 pages, 3 figures in eps, Submitted to NI
Transcription inactivation through local refolding of the RNA polymerase structure
Structural studies of antibiotics not only provide a shortcut to medicine allowing for rational structure-based drug design, but may also capture snapshots of dynamic intermediates that become 'frozen' after inhibitor binding. Myxopyronin inhibits bacterial RNA polymerase (RNAP) by an unknown mechanism. Here we report the structure of dMyx--a desmethyl derivative of myxopyronin B--complexed with a Thermus thermophilus RNAP holoenzyme. The antibiotic binds to a pocket deep inside the RNAP clamp head domain, which interacts with the DNA template in the transcription bubble. Notably, binding of dMyx stabilizes refolding of the beta'-subunit switch-2 segment, resulting in a configuration that might indirectly compromise binding to, or directly clash with, the melted template DNA strand. Consistently, footprinting data show that the antibiotic binding does not prevent nucleation of the promoter DNA melting but instead blocks its propagation towards the active site. Myxopyronins are thus, to our knowledge, a first structurally characterized class of antibiotics that target formation of the pre-catalytic transcription initiation complex-the decisive step in gene expression control. Notably, mutations designed in switch-2 mimic the dMyx effects on promoter complexes in the absence of antibiotic. Overall, our results indicate a plausible mechanism of the dMyx action and a stepwise pathway of open complex formation in which core enzyme mediates the final stage of DNA melting near the transcription start site, and that switch-2 might act as a molecular checkpoint for DNA loading in response to regulatory signals or antibiotics. The universally conserved switch-2 may have the same role in all multisubunit RNAPs
Chemical polysialylation of recombinant human proteins
© Springer Science+Business Media New York 2015. All right reserved. Design of drug with prolonged therapeutic action is one of the rapid developing fields of modern medical science and required implementation of different methods of protein chemistry and molecular biology. There are several therapeutic proteins needing increasing of their stability, pharmacokinetic, and pharmacodynamics parameters. To make long-live DNA-encoded drug PEGylation was proposed. Alternatively polysialic (colominic) acid, extracted from the cell wall of E. coli, fractionated to the desired size by anionexchange chromatography and chemically activated to the amine-reactive aldehyde form, may be chemically attached to the polypeptide chain. Conjugates of proteins and polysialic acid generally resemble properties of protein- PEG conjugates, but possess significant negative net charge and are thought to be fully degradable after endocytosis due to the presence of intracellular enzymes, hydrolyzing the polysialic acid. Complete biodegradation of the polysialic acid moiety makes this kind of conjugates preferable for creation of drugs, intended for chronic use. Here, we describe two different protocols of chemical polysialylation. First protocol was employed for the CHO-derived human butyrylcholinesterase with optimized for recovery of specific enzyme activity. Polysialic acid moieties are attached at various lysine residues. Another protocol was developed for high-yield conjugation of human insulin; major conjugation point is the N-terminal residue of the insulin's light chain. These methods may allow to produce polysialylated conjugates of various proteins or polypeptides with reasonable yield and without significant loss of functional activity
- …