118 research outputs found

    Sex differences in the brain: implications for explaining autism

    Get PDF
    ‘Empathizing’ is the capacity to predict and to respond to the behavior of agents (usually people) by inferring their mental states and responding to these with an appropriate emotion. ‘Systemizing’ is the capacity to predict and to respond to the behavior of non-agentive, deterministic systems, by analyzing input-operation-output relations and inferring the rules that govern such systems. At a population level, females are stronger empathizers and males stronger systemizers. The ‘extreme male brain’ theory posits that autism represents an extreme of the male pattern (impaired empathizing and enhanced systemizing). Here we suggest that specific aspects of autistic neuropathology may also be extremes of typical male neuroanatomy

    Assisting dependent people at home through autonomous unmanned aerial vehicles

    Get PDF
    This work describes a proposal of autonomous unmanned aerial vehicles (AUAVs) for home assistance of dependent people. AUAVs will monitor and recognize human activities during flight to improve their quality of life. However, before bringing such AUAV assistance to real homes, several challenges must be faced to make them viable and practical. Some challenges are technical and some others are related to human factors. In particular, several technical aspects are described for AUAV assistance: (1) flight control, based on our active disturbance rejection control algorithm, (2) flight planning (navigation in obstacle environments), and, (3) processing signals, acquired both from flight-control and monitoring sensors. From the assisted person’s viewpoint, our research focuses on three cues: (1) the user’s perception about AUAV assistance, (2) the influence on human acceptance of AUAV appearance and behavior at home, and (3) the human-robot interaction between assistant AUAV and assisted person. Finally, virtual reality environments are proposed to carry out preliminary tests and user acceptance evaluations.This work has been partially supported by Spanish Ministerio de Ciencia, Innovación y Universidades, Agencia Estatal de Investigaci´on (AEI) / European Regional Development Fund (FEDER, UE) under DPI2016-80894-R grant, and by CIBERSAM of the Instituto de Salud Carlos III. Lidia M. Belmonte holds FPU014/05283 scholarship from Spanish Ministerio de Educaci´on y Formación Profesional

    Autism as a disorder of neural information processing: directions for research and targets for therapy

    Get PDF
    The broad variation in phenotypes and severities within autism spectrum disorders suggests the involvement of multiple predisposing factors, interacting in complex ways with normal developmental courses and gradients. Identification of these factors, and the common developmental path into which theyfeed, is hampered bythe large degrees of convergence from causal factors to altered brain development, and divergence from abnormal brain development into altered cognition and behaviour. Genetic, neurochemical, neuroimaging and behavioural findings on autism, as well as studies of normal development and of genetic syndromes that share symptoms with autism, offer hypotheses as to the nature of causal factors and their possible effects on the structure and dynamics of neural systems. Such alterations in neural properties may in turn perturb activity-dependent development, giving rise to a complex behavioural syndrome many steps removed from the root causes. Animal models based on genetic, neurochemical, neurophysiological, and behavioural manipulations offer the possibility of exploring these developmental processes in detail, as do human studies addressing endophenotypes beyond the diagnosis itself

    Controversies in the Surgical Management of Sigmoid Diverticulitis

    Get PDF
    The timing and appropriateness of surgical treatment of sigmoid diverticular disease remain a topic of controversy. We have reviewed the current literature on this topic, focusing on issues related to the indications and types of surgery. Current evidence would suggest that elective surgery for diverticulitis can be avoided in patients with uncomplicated disease, regardless of the number of recurrent episodes. Furthermore, the need for elective surgey should not be influenced by the age of the patient. Operation should be undertaken in patients with severe attacks, as determined by their clinical and radiological evaluation

    Associations between language development and skin conductance responses to faces and eye gaze in children with autism spectrum disorder

    Get PDF
    Attention to social stimuli is associated with language development, and arousal is associated with the increased viewing of stimuli. We investigated whether skin conductance responses (SCRs) are associated with language development in ASD: a population that shows abnormalities in both attention to others and language development. A sample of 32 children with ASD (7 y – 15 y; M =9 y) was divided into two groups, based on language onset histories. A typically developing comparison group consisted of 18 age and IQ matched children. SCRs were taken as the participants viewed faces. SCRs differentiated the ASD group based on language onset and were associated with abnormal attention to gaze in infancy and subsequent language development

    A Close Eye on the Eagle-Eyed Visual Acuity Hypothesis of Autism

    Get PDF
    Autism spectrum disorders (ASD) have been associated with sensory hypersensitivity. A recent study reported visual acuity (VA) in ASD in the region reported for birds of prey. The validity of the results was subsequently doubted. This study examined VA in 34 individuals with ASD, 16 with schizophrenia (SCH), and 26 typically developing (TYP). Participants with ASD did not show higher VA than those with SCH and TYP. There were no substantial correlations of VA with clinical severity in ASD or SCH. This study could not confirm the eagle-eyed acuity hypothesis of ASD, or find evidence for a connection of VA and clinical phenotypes. Research needs to further address the origins and circumstances associated with altered sensory or perceptual processing in ASD

    A Src-Tks5 Pathway Is Required for Neural Crest Cell Migration during Embryonic Development

    Get PDF
    In the adult organism, cell migration is required for physiological processes such as angiogenesis and immune surveillance, as well as pathological events such as tumor metastasis. The adaptor protein and Src substrate Tks5 is necessary for cancer cell migration through extracellular matrix in vitro and tumorigenicity in vivo. However, a role for Tks5 during embryonic development, where cell migration is essential, has not been examined. We used morpholinos to reduce Tks5 expression in zebrafish embryos, and observed developmental defects, most prominently in neural crest-derived tissues such as craniofacial structures and pigmentation. The Tks5 morphant phenotype was rescued by expression of mammalian Tks5, but not by a variant of Tks5 in which the Src phosphorylation sites have been mutated. We further evaluated the role of Tks5 in neural crest cells and neural crest-derived tissues and found that loss of Tks5 impaired their ventral migration. Inhibition of Src family kinases also led to abnormal ventral patterning of neural crest cells and their derivatives. We confirmed that these effects were likely to be cell autonomous by shRNA-mediated knockdown of Tks5 in a murine neural crest stem cell line. Tks5 was required for neural crest cell migration in vitro, and both Src and Tks5 were required for the formation of actin-rich structures with similarity to podosomes. Additionally, we observed that neural crest cells formed Src-Tks5-dependent cell protrusions in 3-D culture conditions and in vivo. These results reveal an important and novel role for the Src-Tks5 pathway in neural crest cell migration during embryonic development. Furthermore, our data suggests that this pathway regulates neural crest cell migration through the generation of actin-rich pro-migratory structures, implying that similar mechanisms are used to control cell migration during embryogenesis and cancer metastasis

    The epithelial cholinergic system of the airways

    Get PDF
    Acetylcholine (ACh), a classical transmitter of parasympathetic nerve fibres in the airways, is also synthesized by a large number of non-neuronal cells, including airway surface epithelial cells. Strongest expression of cholinergic traits is observed in neuroendocrine and brush cells but other epithelial cell types—ciliated, basal and secretory—are cholinergic as well. There is cell type-specific expression of the molecular pathways of ACh release, including both the vesicular storage and exocytotic release known from neurons, and transmembrane release from the cytosol via organic cation transporters. The subcellular distribution of the ACh release machineries suggests luminal release from ciliated and secretory cells, and basolateral release from neuroendocrine cells. The scenario as known so far strongly suggests a local auto-/paracrine role of epithelial ACh in regulating various aspects on the innate mucosal defence mechanisms, including mucociliary clearance, regulation of macrophage function and modulation of sensory nerve fibre activity. The proliferative effects of ACh gain importance in recently identified ACh receptor disorders conferring susceptibility to lung cancer. The cell type-specific molecular diversity of the epithelial ACh synthesis and release machinery implies that it is differently regulated than neuronal ACh release and can be specifically targeted by appropriate drugs

    Coordinated spatial and temporal expression of Hox genes during embryogenesis in the acoel Convolutriloba longifissura

    Get PDF
    Background: Hox genes are critical for patterning the bilaterian anterior-posterior axis. The evolution of their clustered genomic arrangement and ancestral function has been debated since their discovery. As acoels appear to represent the sister group to the remaining Bilateria (Nephrozoa), investigating Hox gene expression will provide an insight into the ancestral features of the Hox genes in metazoan evolution. Results: We describe the expression of anterior, central and posterior class Hox genes and the ParaHox ortholog Cdx in the acoel Convolutriloba longifissura. Expression of all three Hox genes begins contemporaneously after gastrulation and then resolves into staggered domains along the anterior-posterior axis, suggesting that the spatial coordination of Hox gene expression was present in the bilaterian ancestor. After early surface ectodermal expression, the anterior and central class genes are expressed in small domains of putative neural precursor cells co-expressing ClSoxB1, suggesting an evolutionary early function of Hox genes in patterning parts of the nervous system. In contrast, the expression of the posterior Hox gene is found in all three germ layers in a much broader posterior region of the embryo. Conclusion: Our results suggest that the ancestral set of Hox genes was involved in the anteriorposterior patterning of the nervous system of the last common bilaterian ancestor and were later co-opted for patterning in diverse tissues in the bilaterian radiation. The lack of temporal colinearity of Hox expression in acoels may be due to a loss of genomic clustering in this clade or, alternatively, temporal colinearity may have arisen in conjunction with the expansion of the Hox cluster in the Nephrozoa
    corecore