4 research outputs found

    Dystrophin Dp71 Gliovascular Function : Molecular and Fonctional Alterations in a Mice Model Lacking Dp71

    No full text
    La dĂ©ficience intellectuelle chez les patients atteints de myopathie de Duchenne a Ă©tĂ© associĂ©e Ă  la perte de dystrophine Dp71, produit du gĂšne dmd le plus abondant dans le cerveau adulte. La Dp71 est exprimĂ©e au cƓur d’un complexe macromolĂ©culaire impliquĂ© dans l’ancrage de canaux ioniques (AQP4, Kir4.1) au niveau des pieds des astrocytes pĂ©rivasculaires, ce qui suggĂšre qu’une altĂ©ration de la fonction gliale pourrait contribuer aux dĂ©ficits cognitifs. Dans notre Ă©tude, nous avons caractĂ©risĂ© les altĂ©rations molĂ©culaires prĂ©sentes au niveau macroglial et vasculaire du fait de la perte sĂ©lective de Dp71 chez la souris Dp71-null. Dans un premier temps, au moyen d’analyses semi-quantitatives par microscopie Ă©lectronique et/ou par immunofluorescence et microscopie confocale sur sections de tissu, nous dĂ©montrons la prĂ©sence d’une rĂ©duction drastique mais partielle (70%) de l’expression polarisĂ©e des canaux AQP4 au niveau des pieds des cellules gliales entourant les capillaires du cervelet et de l’hippocampe, avec une rĂ©duction du ÎČ-dystroglycane (>50%) et une perte totale d’α1-syntrophine. L’expression rĂ©siduelle d’AQP4 dans les capillaires n’est pas liĂ©e Ă  une compensation par d’autres dystrophines mais pourrait impliquer des protĂ©ines paralogues. Par contre, l’expression d’AQP4 autour des vaisseaux de gros calibres (artĂ©rioles prĂ©capillaires) est totalement prĂ©servĂ©e dans l’hippocampe. Nos rĂ©sultats suggĂšrent l’implication d’une autre dystrophine au niveau glial et endothelial, la Dp140, et de la Dp427 au niveau des muscles lisses de ces gros vaisseaux. Dans une seconde partie de ce travail de thĂšse, une Ă©tude collaborative a permis de mettre en Ă©vidence un oedĂšme des pieds des cellules gliales et des altĂ©rations modĂ©rĂ©es de l’intĂ©gritĂ© de la barriĂšre hĂ©mato-encĂ©phalique. L’ensemble de ces rĂ©sultats suggĂšre que chez la souris Dp71-null, l’absence d’α1-syntrophine et la rĂ©duction de la distribution polarisĂ©e des canaux AQP4 au niveau des pieds des cellules gliales altĂšre l’homĂ©ostasie hydrique et certaines fonctions de la barriĂšre vasculaire, ce qui pourrait contribuer aux dĂ©ficits synaptiques et cognitifs dĂ©crits dans ce modĂšle.Intellectual disability in Duchenne muscular dystrophy patients was associated with the loss of Dp71, the main dmd gene product in the adult brain. Dp71 is a core component of a macromolecular complex involved in the anchoring of ionic channels (AQP4, Kir4.1) in perivascular glial endfeet, suggesting that a dysfunctional glial mechanism could contribute to cognitive dysfunctions. In our study, we characterized the molecular alterations present in macroglial and vascular domains due to the selective loss of Dp71 in Dp71-null mice. First, using semi-quantitative immunogold analyses in electron microscopy and/or immunofluorescence and confocal image analyses in tissue sections, we demonstrate the presence of a drastic but partial reduction (70%) of the polarized distribution of AQP4 channels in the glial cell endfeet that surroundcapillaries in cerebellum and hippocampus, along with a reduction of ÎČ-dystroglycan (>50%) and complete loss of α1-syntrophin. Residual expression of AQP4 in capillaries did not depend on compensation by other brain dystrophins but could involve paralogue proteins. In contrast, expression of AQP4 in large-diameter vessels (precapillary arterioles) is totally preserved in hippocampus. Our results suggest the involvement of another dystrophin at the glial and endothelial levels, the Dp140, and that of Dp427 in the smooth muscle of large vessels. In a second part of this thesis work, a collaborative study allowed us to demonstrate presence of glial-endfeet edema and moderate alterations of the blood-brain barrier integrity. In all, these results suggest that in Dp71-null mice the absence of α1-syntrophin and reduction of polarized distribution of AQP4 channels in glial endfeet alters water homeostasis and certain functions of the vascular barrier, which might contribute to the synaptic and cognitive defects reported in this model

    RÎle glio-vasculaire de la dystrophine Dp71 : Altérations moléculaires et fonctionnelles chez un modÚle murin déficient en Dp71

    No full text
    Intellectual disability in Duchenne muscular dystrophy patients was associated with the loss of Dp71, the main dmd gene product in the adult brain. Dp71 is a core component of a macromolecular complex involved in the anchoring of ionic channels (AQP4, Kir4.1) in perivascular glial endfeet, suggesting that a dysfunctional glial mechanism could contribute to cognitive dysfunctions. In our study, we characterized the molecular alterations present in macroglial and vascular domains due to the selective loss of Dp71 in Dp71-null mice. First, using semi-quantitative immunogold analyses in electron microscopy and/or immunofluorescence and confocal image analyses in tissue sections, we demonstrate the presence of a drastic but partial reduction (70%) of the polarized distribution of AQP4 channels in the glial cell endfeet that surroundcapillaries in cerebellum and hippocampus, along with a reduction of ÎČ-dystroglycan (>50%) and complete loss of α1-syntrophin. Residual expression of AQP4 in capillaries did not depend on compensation by other brain dystrophins but could involve paralogue proteins. In contrast, expression of AQP4 in large-diameter vessels (precapillary arterioles) is totally preserved in hippocampus. Our results suggest the involvement of another dystrophin at the glial and endothelial levels, the Dp140, and that of Dp427 in the smooth muscle of large vessels. In a second part of this thesis work, a collaborative study allowed us to demonstrate presence of glial-endfeet edema and moderate alterations of the blood-brain barrier integrity. In all, these results suggest that in Dp71-null mice the absence of α1-syntrophin and reduction of polarized distribution of AQP4 channels in glial endfeet alters water homeostasis and certain functions of the vascular barrier, which might contribute to the synaptic and cognitive defects reported in this model.La dĂ©ficience intellectuelle chez les patients atteints de myopathie de Duchenne a Ă©tĂ© associĂ©e Ă  la perte de dystrophine Dp71, produit du gĂšne dmd le plus abondant dans le cerveau adulte. La Dp71 est exprimĂ©e au cƓur d’un complexe macromolĂ©culaire impliquĂ© dans l’ancrage de canaux ioniques (AQP4, Kir4.1) au niveau des pieds des astrocytes pĂ©rivasculaires, ce qui suggĂšre qu’une altĂ©ration de la fonction gliale pourrait contribuer aux dĂ©ficits cognitifs. Dans notre Ă©tude, nous avons caractĂ©risĂ© les altĂ©rations molĂ©culaires prĂ©sentes au niveau macroglial et vasculaire du fait de la perte sĂ©lective de Dp71 chez la souris Dp71-null. Dans un premier temps, au moyen d’analyses semi-quantitatives par microscopie Ă©lectronique et/ou par immunofluorescence et microscopie confocale sur sections de tissu, nous dĂ©montrons la prĂ©sence d’une rĂ©duction drastique mais partielle (70%) de l’expression polarisĂ©e des canaux AQP4 au niveau des pieds des cellules gliales entourant les capillaires du cervelet et de l’hippocampe, avec une rĂ©duction du ÎČ-dystroglycane (>50%) et une perte totale d’α1-syntrophine. L’expression rĂ©siduelle d’AQP4 dans les capillaires n’est pas liĂ©e Ă  une compensation par d’autres dystrophines mais pourrait impliquer des protĂ©ines paralogues. Par contre, l’expression d’AQP4 autour des vaisseaux de gros calibres (artĂ©rioles prĂ©capillaires) est totalement prĂ©servĂ©e dans l’hippocampe. Nos rĂ©sultats suggĂšrent l’implication d’une autre dystrophine au niveau glial et endothelial, la Dp140, et de la Dp427 au niveau des muscles lisses de ces gros vaisseaux. Dans une seconde partie de ce travail de thĂšse, une Ă©tude collaborative a permis de mettre en Ă©vidence un oedĂšme des pieds des cellules gliales et des altĂ©rations modĂ©rĂ©es de l’intĂ©gritĂ© de la barriĂšre hĂ©mato-encĂ©phalique. L’ensemble de ces rĂ©sultats suggĂšre que chez la souris Dp71-null, l’absence d’α1-syntrophine et la rĂ©duction de la distribution polarisĂ©e des canaux AQP4 au niveau des pieds des cellules gliales altĂšre l’homĂ©ostasie hydrique et certaines fonctions de la barriĂšre vasculaire, ce qui pourrait contribuer aux dĂ©ficits synaptiques et cognitifs dĂ©crits dans ce modĂšle

    Dp71 contribution to the molecular scaffold anchoring aquaporine‐4 channels in brain macroglial cells

    No full text
    International audienceIntellectual disability in Duchenne muscular dystrophy has been associated with the loss of dystrophin-protein 71, Dp71, the main dystrophin-gene product in the adult brain. Dp71 shows major expression in perivascular macroglial endfeet, suggesting that dysfunctional glial mechanisms contribute to cognitive impairments. In the present study, we investigated the molecular alterations induced by a selective loss of Dp71 in mice, using semi-quantitative immunogold analyses in electron microscopy and immunofluorescence confocal analyses in brain sections and purified gliovascular units. In macroglial pericapillary endfeet of the cerebellum and hippocampus, we found a drastic reduction (70%) of the polarized distribution of aquaporin-4 (AQP4) channels, a 50% reduction of ÎČ-dystroglycan, and a complete loss of α1-syntrophin. Interestingly, in the hippocampus and cortex, these effects were not homogeneous: AQP4 and AQP4ex isoforms were mostly lost around capillaries but preserved in large vessels corresponding to pial arteries, penetrating cortical arterioles, and arterioles of the hippocampal fissure, indicating the presence of Dp71-independent pools of AQP4 in these vascular structures. In conclusion, the depletion of Dp71 strongly alters the distribution of AQP4 selectively in macroglial perivascular endfeet surrounding capillaries. This effect likely affects water homeostasis and blood-brain barrier functions and may thus contribute to the synaptic and cognitive defects associated with Dp71 deficiency

    Cerebellar synapse properties and cerebellum-dependent motor and non-motor performance in Dp71-null mice

    No full text
    Recent emphasis has been placed on the role that cerebellar dysfunctions could have in the genesis of cognitive deficits in Duchenne muscular dystrophy (DMD). However, relevant genotype-phenotype analyses are missing to define whether cerebellar defects underlie the severe cases of intellectual deficiency that have been associated with genetic loss of the smallest product of the dmd gene, the Dp71 dystrophin. To determine for the first time whether Dp71 loss could affect cerebellar physiology and functions, we have used patch-clamp electrophysiological recordings in acute cerebellar slices and a cerebellum-dependent behavioral test battery addressing cerebellum-dependent motor and non-motor functions in Dp71-null transgenic mice. We found that Dp71 deficiency selectively enhances excitatory transmission at glutamatergic synapses formed by climbing fibers (CFs) on Purkinje neurons, but not at those formed by parallel fibers. Altered basal neurotransmission at CFs was associated with impairments in synaptic plasticity and clustering of the scaffolding postsynaptic density protein PSD-95. At the behavioral level, Dp71-null mice showed some improvements in motor coordination and were unimpaired for muscle force, static and dynamic equilibrium, motivation in high-motor demand and synchronization learning. Dp71-null mice displayed altered strategies in goal-oriented navigation tasks, however, suggesting a deficit in the cerebellum-dependent processing of the procedural components of spatial learning, which could contribute to the visuospatial deficits identified in this model. In all, the observed deficits suggest that Dp71 loss alters cerebellar synapse function and cerebellum-dependent navigation strategies without being detrimental for motor functions
    corecore