2,208 research outputs found

    Reduced Intellectual Development in Children with Prenatal Lead Exposure

    Get PDF
    OBJECTIVE: Low-level postnatal lead exposure is associated with poor intellectual development in children, although effects of prenatal exposure are less well studied. We hypothesized that prenatal lead exposure would have a more powerful and lasting impact on child development than postnatal exposure. DESIGN: We used generalized linear mixed models with random intercept and slope to analyze the pattern of lead effect of the cohort from pregnancy through 10 years of age on child IQ from 6 to 10 years. We statistically evaluated dose–response nonlinearity. PARTICIPANTS: A cohort of 175 children, 150 of whom had complete data for all included covariates, attended the National Institute of Perinatology in Mexico City from 1987 through 2002. EVALUATIONS/MEASUREMENTS: We used the Wechsler Intelligence Scale for Children–Revised, Spanish version, to measure IQ. Blood lead (BPb) was measured by a reference laboratory of the Centers for Disease Control and Prevention (CDC) quality assurance program for BPb. RESULTS: Geometric mean BPb during pregnancy was 8.0 μg/dL (range, 1–33 μg/dL), from 1 through 5 years was 9.8 μg/dL (2.8–36.4 μg/dL), and from 6 through 10 years was 6.2 μg/dL (2.2–18.6 μg/dL). IQ at 6–10 years decreased significantly only with increasing natural-log third-trimester BPb (β = −3.90; 95% confidence interval, −6.45 to −1.36), controlling for other BPb and covariates. The dose–response BPb–IQ function was log-linear, not linear–linear. CONCLUSIONS: Lead exposure around 28 weeks gestation is a critical period for later child intellectual development, with lasting and possibly permanent effects. There was no evidence of a threshold; the strongest lead effects on IQ occurred within the first few micrograms of BPb. RELEVANCE TO CLINICAL PRACTICE: Current CDC action limits for children applied to pregnant women permit most lead-associated child IQ decreases measured over the studied BPb range

    Low-Level Environmental Lead Exposure and Children’s Intellectual Function: An International Pooled Analysis

    Get PDF
    Lead is a confirmed neurotoxin, but questions remain about lead-associated intellectual deficits at blood lead levels < 10 μg/dL and whether lower exposures are, for a given change in exposure, associated with greater deficits. The objective of this study was to examine the association of intelligence test scores and blood lead concentration, especially for children who had maximal measured blood lead levels < 10 μg/dL. We examined data collected from 1,333 children who participated in seven international population-based longitudinal cohort studies, followed from birth or infancy until 5–10 years of age. The full-scale IQ score was the primary outcome measure. The geometric mean blood lead concentration of the children peaked at 17.8 μg/dL and declined to 9.4 μg/dL by 5–7 years of age; 244 (18%) children had a maximal blood lead concentration < 10 μg/dL, and 103 (8%) had a maximal blood lead concentration < 7.5 μg/dL. After adjustment for covariates, we found an inverse relationship between blood lead concentration and IQ score. Using a log-linear model, we found a 6.9 IQ point decrement [95% confidence interval (CI), 4.2–9.4] associated with an increase in concurrent blood lead levels from 2.4 to 30 μg/dL. The estimated IQ point decrements associated with an increase in blood lead from 2.4 to 10 μg/dL, 10 to 20 μg/dL, and 20 to 30 μg/dL were 3.9 (95% CI, 2.4–5.3), 1.9 (95% CI, 1.2–2.6), and 1.1 (95% CI, 0.7–1.5), respectively. For a given increase in blood lead, the lead-associated intellectual decrement for children with a maximal blood lead level < 7.5 μg/dL was significantly greater than that observed for those with a maximal blood lead level ≥7.5 μg/dL (p = 0.015). We conclude that environmental lead exposure in children who have maximal blood lead levels < 7.5 μg/dL is associated with intellectual deficits

    Maternal protein and folic acid intake during gestation does not program leptin transcription or serum concentration in rat progeny

    Get PDF
    Maternal nutrition during gestation influences the development of the fetus, thereby determining its phenotype, including nutrient metabolism, appetite, and feeding behavior. The control of appetite is a very complex process and can be modulated by orexigenic and anorexigenic mediators such as leptin, which is involved in the regulation of energy homeostasis by controlling food intake and energy expenditure. Leptin transcription and secretion are regulated by numerous factors, nutrition being one of them. The present study was designed to test whether maternal nutrition can permanently affect leptin gene transcription and leptin serum concentration in rat progeny. Moreover, we analyzed whether leptin expression and secretion in response to high-fat postweaning feeding depends on the maternal diet during gestation. Pregnant rats were fed either a normal protein, normal folic acid diet (the AIN-93 diet); a protein-restricted, normal folic acid diet; a protein-restricted, folic acid-supplemented diet; or a normal protein, folic acid-supplemented diet. After weaning, the progeny was fed either the AIN-93 diet or a high-fat diet. Neither maternal nutrition nor the postweaning diet significantly affected Lep transcription. High-fat feeding after weaning was associated with higher serum leptin concentration, but the reaction of an organism to the fat content of the diet was not determined by maternal nutrition during gestation. There was no correlation between Lep mRNA level and serum leptin concentration. Global DNA methylation in adipose tissue was about 30% higher in rats fed postnatally the high-fat diet (P < 0.01). Our study showed that the protein and folic acid content in the maternal diet had no significant programming effect on Lep transcription and serum leptin concentration in the rats

    Determining the neurotransmitter concentration profile at active synapses

    Get PDF
    Establishing the temporal and concentration profiles of neurotransmitters during synaptic release is an essential step towards understanding the basic properties of inter-neuronal communication in the central nervous system. A variety of ingenious attempts has been made to gain insights into this process, but the general inaccessibility of central synapses, intrinsic limitations of the techniques used, and natural variety of different synaptic environments have hindered a comprehensive description of this fundamental phenomenon. Here, we describe a number of experimental and theoretical findings that has been instrumental for advancing our knowledge of various features of neurotransmitter release, as well as newly developed tools that could overcome some limits of traditional pharmacological approaches and bring new impetus to the description of the complex mechanisms of synaptic transmission

    Search for a Technicolor omega_T Particle in Events with a Photon and a b-quark Jet at CDF

    Full text link
    If the Technicolor omega_T particle exists, a likely decay mode is omega_T -> gamma pi_T, followed by pi_T -> bb-bar, yielding the signature gamma bb-bar. We have searched 85 pb^-1 of data collected by the CDF experiment at the Fermilab Tevatron for events with a photon and two jets, where one of the jets must contain a secondary vertex implying the presence of a b quark. We find no excess of events above standard model expectations. We express the result of an exclusion region in the M_omega_T - M_pi_T mass plane.Comment: 14 pages, 2 figures. Available from the CDF server (PS with figs): http://www-cdf.fnal.gov/physics/pub98/cdf4674_omega_t_prl_4.ps FERMILAB-PUB-98/321-

    Observation of Hadronic W Decays in t-tbar Events with the Collider Detector at Fermilab

    Full text link
    We observe hadronic W decays in t-tbar -> W (-> l nu) + >= 4 jet events using a 109 pb-1 data sample of p-pbar collisions at sqrt{s} = 1.8 TeV collected with the Collider Detector at Fermilab (CDF). A peak in the dijet invariant mass distribution is obtained that is consistent with W decay and inconsistent with the background prediction by 3.3 standard deviations. From this peak we measure the W mass to be 77.2 +- 4.6 (stat+syst) GeV/c^2. This result demonstrates the presence of two W bosons in t-tbar candidates in the W (-> l nu) + >= 4 jet channel.Comment: 20 pages, 4 figures, submitted to PR

    Measurement of the B0 anti-B0 oscillation frequency using l- D*+ pairs and lepton flavor tags

    Full text link
    The oscillation frequency Delta-md of B0 anti-B0 mixing is measured using the partially reconstructed semileptonic decay anti-B0 -> l- nubar D*+ X. The data sample was collected with the CDF detector at the Fermilab Tevatron collider during 1992 - 1995 by triggering on the existence of two lepton candidates in an event, and corresponds to about 110 pb-1 of pbar p collisions at sqrt(s) = 1.8 TeV. We estimate the proper decay time of the anti-B0 meson from the measured decay length and reconstructed momentum of the l- D*+ system. The charge of the lepton in the final state identifies the flavor of the anti-B0 meson at its decay. The second lepton in the event is used to infer the flavor of the anti-B0 meson at production. We measure the oscillation frequency to be Delta-md = 0.516 +/- 0.099 +0.029 -0.035 ps-1, where the first uncertainty is statistical and the second is systematic.Comment: 30 pages, 7 figures. Submitted to Physical Review

    Inclusive Search for Anomalous Production of High-pT Like-Sign Lepton Pairs in Proton-Antiproton Collisions at sqrt{s}=1.8 TeV

    Get PDF
    We report on a search for anomalous production of events with at least two charged, isolated, like-sign leptons with pT > 11 GeV/c using a 107 pb^-1 sample of 1.8 TeV ppbar collisions collected by the CDF detector. We define a signal region containing low background from Standard Model processes. To avoid bias, we fix the final cuts before examining the event yield in the signal region using control regions to test the Monte Carlo predictions. We observe no events in the signal region, consistent with an expectation of 0.63^(+0.84)_(-0.07) events. We present 95% confidence level limits on new physics processes in both a signature-based context as well as within a representative minimal supergravity (tanbeta = 3) model.Comment: 15 pages, 4 figures. Minor textual changes, cosmetic improvements to figures and updated and expanded reference
    corecore