121 research outputs found
Silver release from silver nanoparticles in natural waters
Silver nanoparticles (AgNPs) are used increasingly in consumer products for their antimicrobial properties. This increased use raises ecological concern because of the release of AgNPs into the environment. Once released, zero-valent silver may be oxidized to Ag+ and the cation liberated or it may persist as AgNPs. The chemical form of Ag has implications for its toxicity; it is therefore crucial to characterize the persistence of AgNPs to predict their ecotoxicological potential. In this study, we evaluated the release of Ag from AgNPs of various sizes exposed to river and lake water for up to 4 months. Several AgNP-capping agents were also considered: polyvinylpyrrolidone (PVP), tannic acid (Tan), and citric acid (Cit). We observed a striking difference between 5, 10, and 50 nm AgNPs, with the latter being more resistant to dissolution in oxic water on a mass basis. However, the difference decreased when Ag was surface-area-normalized, suggesting an important role of the surface area in determining Ag loss. We propose that rapid initial Ag+ release was attributable to desorption of Ag+ from nanoparticle surfaces. We also observed that PVP- and Tan-AgNPs are more prone to Ag+ release than Cit-AgNPs. In addition, it is likely that oxidative dissolution also occurs but at a slower rate. This study clearly shows that small AgNPs (5 nm, PVP and Tan) dissolve rapidly and almost completely, while larger AgNPs (50 nm) have the potential to persist for an extended period of time and could serve as a continuous source of Ag ions
Digital Avatars for Older People’s Care
Es el preprint de: Bertoa M.F., Moreno N., Perez-Vereda A., Bandera D., Álvarez-Palomo J.M., Canal C. (2020) Digital Avatars for Older People’s Care. In: García-Alonso J., Fonseca C. (eds) Gerontechnology. IWoG 2019. Communications in Computer and Information Science, vol 1185. Springer, Cham. doi:10.1007/978-3-030-41494-8_6.The continuous increase in life expectancy poses a challenge for health systems in modern societies, especially with respect to older people living in rural low-populated areas, both in terms of isolation and difficulty to access and communicate with health services. In this paper, we address these issues by applying the Digital Avatars framework to Gerontechnology. Building on our previous work on mobile and social computing, in particular the People as a Service model, Digital Avatars make intensive use of the capabilities of current smartphones to collect information about their owners, and applies techniques of Complex Event Processing extended with uncertainty for inferring the habits and preferences of the user of the phone and building with them a virtual profile. These virtual profiles allow to monitor the well-being and quality of life of older adults, reminding pharmacological treatments and home health testings, and raising alerts when an anomalous situation is detected.This work has been funded by the Spanish Government under grant PGC2018-094905-B-100
Expression of 19 microRNAs in glioblastoma and comparison with other brain neoplasia of grades I-III
miRNAs Expression Analysis in Paired Fresh/Frozen and Dissected Formalin Fixed and Paraffin Embedded Glioblastoma Using Real-Time PCR
miRNAs are small molecules involved in gene regulation. Each tissue shows a characteristic miRNAs epression profile that could be altered during neoplastic transformation. Glioblastoma is the most aggressive brain tumour of the adult with a high rate of mortality. Recognizing a specific pattern of miRNAs for GBM could provide further boost for target therapy. The availability of fresh tissue for brain specimens is often limited and for this reason the possibility of starting from formalin fixed and paraffin embedded tissue (FFPE) could very helpful even in miRNAs expression analysis. We analysed a panel of 19 miRNAs in 30 paired samples starting both from FFPE and Fresh/Frozen material. Our data revealed that there is a good correlation in results obtained from FFPE in comparison with those obtained analysing miRNAs extracted from Fresh/Frozen specimen. In the few cases with a not good correlation value we noticed that the discrepancy could be due to dissection performed in FFPE samples. To the best of our knowledge this is the first paper demonstrating that the results obtained in miRNAs analysis using Real-Time PCR starting from FFPE specimens of glioblastoma are comparable with those obtained in Fresh/Frozen samples
Pattern of care and effectiveness of treatment for glioblastoma patients in the real world: Results from a prospective population-based registry. Could survival differ in a high-volume center?
BACKGROUND:
As yet, no population-based prospective studies have been conducted to investigate the incidence and clinical outcome of glioblastoma (GBM) or the diffusion and impact of the current standard therapeutic approach in newly diagnosed patients younger than aged 70 years.
METHODS:
Data on all new cases of primary brain tumors observed from January 1, 2009, to December 31, 2010, in adults residing within the Emilia-Romagna region were recorded in a prospective registry in the Project of Emilia Romagna on Neuro-Oncology (PERNO). Based on the data from this registry, a prospective evaluation was made of the treatment efficacy and outcome in GBM patients.
RESULTS:
Two hundred sixty-seven GBM patients (median age, 64 y; range, 29-84 y) were enrolled. The median overall survival (OS) was 10.7 months (95% CI, 9.2-12.4). The 139 patients 64aged 70 years who were given standard temozolomide treatment concomitant with and adjuvant to radiotherapy had a median OS of 16.4 months (95% CI, 14.0-18.5). With multivariate analysis, OS correlated significantly with KPS (HR = 0.458; 95% CI, 0.248-0.847; P = .0127), MGMT methylation status (HR = 0.612; 95% CI, 0.388-0.966; P = .0350), and treatment received in a high versus low-volume center (HR = 0.56; 95% CI, 0.328-0.986; P = .0446).
CONCLUSIONS:
The median OS following standard temozolomide treatment concurrent with and adjuvant to radiotherapy given to (72.8% of) patients aged 6470 years is consistent with findings reported from randomized phase III trials. The volume and expertise of the treatment center should be further investigated as a prognostic factor
Evidence for Sub-Haplogroup H5 of Mitochondrial DNA as a Risk Factor for Late Onset Alzheimer's Disease
BACKGROUND: Alzheimer's Disease (AD) is the most common neurodegenerative disease and the leading cause of dementia among senile subjects. It has been proposed that AD can be caused by defects in mitochondrial oxidative phosphorylation. Given the fundamental contribution of the mitochondrial genome (mtDNA) for the respiratory chain, there have been a number of studies investigating the association between mtDNA inherited variants and multifactorial diseases, however no general consensus has been reached yet on the correlation between mtDNA haplogroups and AD. METHODOLOGY/PRINCIPAL FINDINGS: We applied for the first time a high resolution analysis (sequencing of displacement loop and restriction analysis of specific markers in the coding region of mtDNA) to investigate the possible association between mtDNA-inherited sequence variation and AD in 936 AD patients and 776 cognitively assessed normal controls from central and northern Italy. Among over 40 mtDNA sub-haplogroups analysed, we found that sub-haplogroup H5 is a risk factor for AD (OR=1.85, 95% CI:1.04-3.23) in particular for females (OR=2.19, 95% CI:1.06-4.51) and independently from the APOE genotype. Multivariate logistic regression revealed an interaction between H5 and age. When the whole sample is considered, the H5a subgroup of molecules, harboring the 4336 transition in the tRNAGln gene, already associated to AD in early studies, was about threefold more represented in AD patients than in controls (2.0% vs 0.8%; p=0.031), and it might account for the increased frequency of H5 in AD patients (4.2% vs 2.3%). The complete re-sequencing of the 56 mtDNAs belonging to H5 revealed that AD patients showed a trend towards a higher number (p=0.052) of sporadic mutations in tRNA and rRNA genes when compared with controls. CONCLUSIONS: Our results indicate that high resolution analysis of inherited mtDNA sequence variation can help in identifying both ancient polymorphisms defining sub-haplogroups and the accumulation of sporadic mutations associated with complex traits such as AD
- …