70 research outputs found

    A study on the effect of contact pressure during physical activity on photoplethysmographic heart rate measurements

    Get PDF
    Heart rate (HR) as an important physiological indicator could properly describe global subject’s physical status. Photoplethysmographic (PPG) sensors are catching on in field of wearable sensors, combining the advantages in costs, weight and size. Nevertheless, accuracy in HR readings is unreliable specifically during physical activity. Among several identified sources that affect PPG recording, contact pressure (CP) between the PPG sensor and skin greatly influences the signals. Methods: In this study, the accuracy of HR measurements of a PPG sensor at different CP was investigated when compared with a commercial ECG-based chest strap used as a test control, with the aim of determining the optimal CP to produce a reliable signal during physical activity. Seventeen subjects were enrolled for the study to perform a physical activity at three different rates repeated at three different contact pressures of the PPG-based wristband. Results: The results show that the CP of 54 mmHg provides the most accurate outcome with a Pearson correlation coefficient ranging from 0.81 to 0.95 and a mean average percentage error ranging from 3.8% to 2.4%, based on the physical activity rate. Conclusion: Authors found that changes in the CP have greater effects on PPG-HR signal quality than those deriving from the intensity of the physical activity and specifically, the individual best CP for each subject provided reliable HR measurements even for a high intensity of physical exercise with a Bland–Altman plot within ±11 bpm. Although future studies on a larger cohort of subjects are still needed, this study could contribute a profitable indication to enhance accuracy of PPG-based wearable devices

    Systolic characteristics and dynamic changes of the mitral valve in different grades of ischemic mitral regurgitation - insights from 3D transesophageal echocardiography

    No full text
    Background: Mitral regurgitation in ischemic heart disease (IMR) is a strong predictor of outcome but until now, pathophysiology is not sufficiently understood and treatment is not satisfying. We aimed to systematically evaluate structural and functional mitral valve leaflet and annular characteristics in patients with IMR to determine the differences in geometric and dynamic changes of the MV between significant and mild IMR. Methods: Thirty-seven patients with IMR (18 mild (m)MR, 19 significant (moderate+severe) (s)MR) and 33 controls underwent TEE. 3D volumes were analyzed using 3D feature-tracking software. Results: All IMR patients showed a loss of mitral annular motility and non-planarity, whereas mitral annulus dilation and leaflet enlargement occurred in sMR only. Active-posterior-leaflet-area decreased in early systole in all three groups accompanied by an increase in active-anterior-leaflet-area in early systole in controls and mMR but only in late systole in sMR. Conclusions: In addition to a significant enlargement and loss in motility of the MV annulus, patients with significant IMR showed a spatio-temporal alteration of the mitral valve coaptation line due to a delayed increase in active-anterior-leaflet-area. This abnormality is likely to contribute to IMR severity and is worth the evaluation of becoming a parameter for clinical decision-making. Further, addressing the leaflets aiming to increase the active leaflet-area is a promising therapeutic approach for significant IMR. Additional studies with a larger sample size and post-operative assessment are warranted to further validate our findings and help understand the dynamics of the mitral valve
    • …
    corecore