2 research outputs found

    The fodder legume Chamaecytisus albidus establishes functional symbiosis with different Bradyrhizobial symbiovars in Morocco

    Get PDF
    In this work, we analyzed the symbiotic performance and diversity of rhizobial strains isolated from the endemic shrubby legume Chamaecytisus albidus grown in soils of three different agroforestry ecosystems representing arid and semi-arid forest areas in Morocco. The analysis of the rrs gene sequences from twenty-four representative strains selected after REP-PCR fingerprinting showed that all the strains belong to the genus Bradyrhizobium. Following multi-locus sequence analysis (MLSA) using the rrs, gyrB, recA, glnII, and rpoB housekeeping genes, five representative strains, CA20, CA61, CJ2, CB10, and CB61 were selected for further molecular studies. Phylogenetic analysis of the concatenated glnII, gyrB, recA, and rpoB genes showed that the strain CJ2 isolated from Sahel Doukkala soil is close to Bradyrhizobium canariense BTA-1 (96.95%); that strains CA20 and CA61 isolated from the Amhach site are more related to Bradyrhizobium valentinum LmjM3, with 96.40 and 94.57% similarity values; and that the strains CB10 and CB60 isolated from soil in the Bounaga site are more related to Bradyrhizobium murdochi CNPSo 4020 and Bradyrhizobium. retamae Ro19, with which they showed 95.45 and 97.34% similarity values, respectively. The phylogenetic analysis of the symbiotic genes showed that the strains belong to symbiovars lupini, genistearum, and retamae. All the five strains are able to nodulate Lupinus luteus, Retama monosperma, and Cytisus monspessilanus, but they do not nodulate Glycine max and Phaseolus vulgaris. The inoculation tests showed that the strains isolated from the 3 regions improve significantly the plant yield as compared to uninoculated plants. However, the strains of Bradyrhizobium sp. sv. retamae isolated from the site of Amhach were the most performing. The phenotypic analysis showed that the strains are able to use a wide range of carbohydrates and amino acids as sole carbon and nitrogen source. The strains isolated from the arid areas of Bounaga and Amhach were more tolerant to salinity and drought stress than strains isolated in the semi-arid area of Sahel Doukkala.Financial support was obtained from Académie Hassan II des Sciences et Techniques (in Morocco). Mr Omar Bouhnik received a grant from the Hassan II Academy of Science and Technolog

    The endemic Chamaecytisus albidus is nodulated by symbiovar genistearum of Bradyrhizobium in the Moroccan Maamora Forest

    Get PDF
    Out of 54 isolates from root nodules of the Moroccan-endemic Chamaecytisus albidus plants growing in soils from the Maamora cork oak forest, 44 isolates formed nodules when used to infect their original host plant. A phenotypic analysis showed the metabolic diversity of the strains that used different carbohydrates and amino acids as sole carbon and nitrogen sources. The isolates grew on media with pH values ranging from 6 to 8. However, they did not tolerate high temperatures or drought and they did not grow on media with salt concentrations higher than 85 mM. REP-PCR fingerprinting grouped the strains into 12 clusters, of which representative strains were selected for ARDRA and rrs analyses. The rrs gene sequence analysis indicated that all 12 strains were members of the genus Bradyrhizobium and their phylogeny showed that they were grouped into two different clusters. Two strains from each group were selected for multilocus sequence analysis (MLSA) using atpD, recA, gyrB and glnII housekeeping genes. The inferred phylogenetic trees confirmed that the strains clustered into two divergent clusters. Strains CM55 and CM57 were affiliated to the B. canariense/B. lupini group, whereas strains CM61 and CM64 were regrouped within the B. cytisi/B. rifense lineage. The analysis of the nodC symbiotic gene affiliated the strains to the symbiovar genistearum. The strains were also able to nodulate Retama monosperma, Lupinus luteus and Cytisus monspessulanus, but not Phaseolus vulgaris or Glycine max. Inoculation tests with C. albidus showed that some strains could be exploited as efficient inocula that could be used to improve plant growth in the Maamora forest.The authors want to thank all the people who contributed to theachievement of this study. Financial support was obtained from‘‘Académie Hassan II des Sciences et Techniques” (Morocco). MrOmar Bouhnik received a grant from the Hassan II Academy of Science and Technology. The authors also thank the Ministerio de Economía, Industria y Competitividad (Spain) for the granting ofthe ERDF-cofinanced project AGL2017–85676R
    corecore