28 research outputs found

    Shielding blood donors from harm

    Get PDF

    AMNIOTE PHYLOGENY AND THE IMPORTANCE OF FOSSILS

    Full text link
    Several prominent cladists have questioned the importance of fossils in phylogenctic inference, and it is becoming increasingly popular to simply fit extinct forms, if they are considered at all, to a cladogram of Recent taxa. Gardiner's (1982) and LØvtrup's (1985) study of amniote phylogeny exemplifies this differential treatment, and we focused on that group of organisms to test the proposition that fossils cannot overturn a theory of relationships based only on the Recent biota. Our parsimony analysis of amniote phylogeny, special knowledge contributed by fossils being scrupulously avoided, led to the following best fitting classification, which is similar to the novel hypothesis Gardiner published: (lepidosaurs (turtles (mammals (birds, crocodiles)))). However, adding fossils resulted in a markedly different most parsimonious cladogram of the extant taxa: (mammals (turtles (lepidosaurs (birds, crocodiles)))). That classification is like the traditional hypothesis, and it provides a better fit to the stratigraphic record. To isolate the extinct taxa responsible for the latter classification, the data were successively partitioned with each phylogenetic analysis, and we concluded that: (1) the ingroup, not the outgroup, fossils were important; (2) synapsid, not reptile, fossils were pivotal; (3) certain synapsid fossils, not the earliest or latest, were responsible. The critical nature of the synapsid fossils seemed to lie in the particular combination of primitive and derived character slates they exhibited. Classifying those fossils, along with mammals, as the sister group to the lineage consisting of birds and crocodiles resulted in a relatively poor fit to data; one involving a 2—4 fold increase in evolutionary reversals! Thus, the importance of the critical fossils, collectively or individually, seems to reside in their relative primitive-ness, and the simplest explanation for their more conservative nature is that they have had less time to evolve. While fossils may be important in phylogenetic inference only under certain conditions, there is no compelling reason to prejudge their contribution. We urge systematists to evaluate fairly all of the available evidence.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73857/1/j.1096-0031.1988.tb00514.x.pd

    New information on the braincase and inner ear of Euparkeria capensis Broom: implications for diapsid and archosaur evolution

    Get PDF
    Since its discovery, Euparkeria capensis has been a key taxon for understanding the early evolution of archosaurs. The braincase of Euparkeria was described based on a single specimen, but much uncertainty remained. For the first time, all available braincase material of Euparkeria is re-examined using micro-computed tomography scanning. Contrary to previous work, the parabasisphenoid does not form the posterior border of the fenestra ovalis in lateral view, but it does bear a dorsal projection that forms the anteroventral half of the fenestra. No bone pneumatization was found, but the lateral depression of the parabasisphenoid may have been pneumatic. We propose that the lateral depression likely corresponds to the anterior tympanic recess present in crown archosaurs. The presence of a laterosphenoid is confirmed for Euparkeria. It largely conforms to the crocodilian condition, but shows some features which make it more similar to the avemetatarsalian laterosphenoid. The cochlea of Euparkeria is elongated, forming a deep cochlear recess. In comparison with other basal archosauromorphs, the (C) 2016 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution Licens
    corecore