157 research outputs found

    Vegetative compatibility of Verticillium dahlia isolated from olive trees (Olea europea L.) in Algeria

    Get PDF
    25 isolates of Verticillium dahliae obtained from olive trees: 18 of them originating from two regions of Algeria (Nord-ouest and Kabylie), 4 isolates from France and 3 from Syria. They were investigated using complementation tests with nitrate-nonutilizing (Nit) mutants to know their vegetative compatibility. Among 250 chlorate-resistant sectors obtained, only 187 were Nit mutants. Three types of Nit mutants were obtained (Nit1, Nit3 and NitM) on the basis of the fungal phenotype. Nit1 mutants were the most frequent (71.6%), followed by NitM (16.6%) and Nit3 (11.8%). Based on their ability to formheterokaryons, all olive pathogenic isolates were grouped into a single vegetative compatibility groups (VCG). This is a good indication of the homogeneity of the Algerian V. dahliae population. The results also suggest the absence of a relationship between geographical origin of strains and VCG

    Changes in the transcriptional profile in response to overexpression of the osteopontin-c splice isoform in ovarian (OvCar-3) and prostate (PC-3) cancer cell lines.

    Get PDF
    BACKGROUND: Especially in human tumor cells, the osteopontin (OPN) primary transcript is subject to alternative splicing, generating three isoforms termed OPNa, OPNb and OPNc. We previously demonstrated that the OPNc splice variant activates several aspects of the progression of ovarian and prostate cancers. The goal of the present study was to develop cell line models to determine the impact of OPNc overexpression on main cancer signaling pathways and thus obtain insights into the mechanisms of OPNc pro-tumorigenic roles. METHODS: Human ovarian and prostate cancer cell lines, OvCar-3 and PC-3 cells, respectively, were stably transfected to overexpress OPNc. Transcriptomic profiling was performed on these cells and compared to controls, to identify OPNc overexpression-dependent changes in gene expression levels and pathways by qRT-PCR analyses. RESULTS: Among 84 genes tested by using a multiplex real-time PCR Cancer Pathway Array approach, 34 and 16, respectively, were differentially expressed between OvCar-3 and PC-3 OPNc-overexpressing cells in relation to control clones. Differentially expressed genes are included in all main hallmarks of cancer, and several interacting proteins have been identified using an interactome network analysis. Based on marked up-regulation of Vegfa transcript in response to OPNc overexpression, we partially validated the array data by demonstrating that conditioned medium (CM) secreted from OvCar-3 and PC-3 OPNc-overexpressing cells significantly induced endothelial cell adhesion, proliferation and migration, compared to CM secreted from control cells. CONCLUSIONS: Overall, the present study elucidated transcriptional changes of OvCar-3 and PC-3 cancer cell lines in response to OPNc overexpression, which provides an assessment for predicting the molecular mechanisms by which this splice variant promotes tumor progression features

    Genetic diversity of Verticillium dahliae isolates from olive trees in Algeria

    Get PDF
    Verticillium wilt of olive trees (Olea europaea L.), a wilt caused by the soil-borne fungus Verticillium dahliae (Kleb), is one of the most serious diseases in Algerian olive groves. To assess the pathogenic and genetic diversity of olive-infecting V. dahliae populations in Algeria, orchards from the two main olive-producing regions (north-western Algeria and Kabylia) were sampled and 27 V. dahliae isolates were recovered. For purposes of comparison, V. dahliae strains from France and Syria were added to the analysis. By means of PCR primers that specifically discriminate between defoliating (D) and non-defoliating (ND) V. dahliae pathotypes it was shown that all V. dahliae isolates belonged to the ND pathotype. The amount of genetic variation between the 43 isolates was assessed by random amplification of polymorphic DNA (RAPD). A total of 16 RAPD haplotypes were found on the basis of the presence or absence of 25 polymorphic DNA fragments. Genotypic diversity between the 27 Algerian isolates was low, with two RAPD haplotypes accounting for 70% of all isolates. Genotypic diversity was however greater between isolates from Kabylia than between isolates from north-western Algeria. Cluster analysis showed that most of the Algerian V. dahliae isolates grouped together with the French and Syrian isolates. On the basis of their ability to form heterokaryons with each other, a subset of 25 olive-pathogenic isolates was grouped into a single vegetative compatibility group (VCG). These results suggest that the olive-infecting V. dahliae populations in Algeria show limited diversity and that caution should be taken to prevent introduction of the D pathotype

    Genetic diversity of Verticillium dahliae isolates from olive trees in Algeria

    Get PDF
    Summary. Verticillium wilt of olive trees (Olea europaea L.), a wilt caused by the soil-borne fungus Verticillium dahliae (Kleb), is one of the most serious diseases in Algerian olive groves. To assess the pathogenic and genetic diversity of olive-infecting V. dahliae populations in Algeria, orchards from the two main olive-producing regions (north-western Algeria and Kabylia) were sampled and 27 V. dahliae isolates were recovered. For purposes of comparison, V. dahliae strains from France and Syria were added to the analysis. By means of PCR primers that specifically discriminate between defoliating (D) and non-defoliating (ND) V. dahliae pathotypes it was shown that all V. dahliae isolates belonged to the ND pathotype. The amount of genetic variation between the 43 isolates was assessed by random amplification of polymorphic DNA (RAPD). A total of 16 RAPD haplotypes were found on the basis of the presence or absence of 25 polymorphic DNA fragments. Genotypic diversity between the 27 Algerian isolates was low, with two RAPD haplotypes accounting for 70% of all isolates. Genotypic diversity was however greater between isolates from Kabylia than between isolates from north-western Algeria. Cluster analysis showed that most of the Algerian V. dahliae isolates grouped together with the French and Syrian isolates. On the basis of their ability to form heterokaryons with each other, a subset of 25 olive-pathogenic isolates was grouped into a single vegetative compatibility group (VCG). These results suggest that the olive-infecting V. dahliae populations in Algeria show limited diversity and that caution should be taken to prevent introduction of the D pathotype

    Resistance of Dynamin-related Protein 1 Oligomers to Disassembly Impairs Mitophagy, Resulting in Myocardial Inflammation and Heart Failure

    Get PDF
    We have reported previously that a missense mutation in the mitochondrial fission gene Dynamin-related protein 1 (Drp1) underlies the Python mouse model of monogenic dilated cardiomyopathy. The aim of this study was to investigate the consequences of the C452F mutation on Drp1 protein function and to define the cellular sequelae leading to heart failure in the Python monogenic dilated cardiomyopathy model. We found that the C452F mutation increased Drp1 GTPase activity. The mutation also conferred resistance to oligomer disassembly by guanine nucleotides and high ionic strength solutions. In a mouse embryonic fibroblast model, Drp1 C452F cells exhibited abnormal mitochondrial morphology and defective mitophagy. Mitochondria in C452F mouse embryonic fibroblasts were depolarized and had reduced calcium uptake with impaired ATP production by oxidative phosphorylation. In the Python heart, we found a corresponding progressive decline in oxidative phosphorylation with age and activation of sterile inflammation. As a corollary, enhancing autophagy by exposure to a prolonged low-protein diet improved cardiac function in Python mice. In conclusion, failure of Drp1 disassembly impairs mitophagy, leading to a downstream cascade of mitochondrial depolarization, aberrant calcium handling, impaired ATP synthesis, and activation of sterile myocardial inflammation, resulting in heart failure

    Cross-Priming Dendritic Cells Exacerbate Immunopathology After Ischemic Tissue Damage in the Heart.

    Get PDF
    BACKGROUND: Ischemic heart disease is a leading cause of heart failure and despite advanced therapeutic options, morbidity and mortality rates remain high. Although acute inflammation in response to myocardial cell death has been extensively studied, subsequent adaptive immune activity and anti-heart autoimmunity may also contribute to the development of heart failure. After ischemic injury to the myocardium, dendritic cells (DC) respond to cardiomyocyte necrosis, present cardiac antigen to T cells, and potentially initiate a persistent autoimmune response against the heart. Cross-priming DC have the ability to activate both CD4 METHODS: We induced type 2 myocardial infarction-like ischemic injury in the heart by treatment with a single high dose of the β-adrenergic agonist isoproterenol. We characterized the DC population in the heart and mediastinal lymph nodes and analyzed long-term cardiac immunopathology and functional decline in wild type and RESULTS: A diverse DC population, including cross-priming DC, is present in the heart and activated after ischemic injury. CONCLUSION: Activation of cytotoxic CD

    Microcalcifications in breast cancer: novel insights into the molecular mechanism and functional consequence of mammary mineralisation.

    Get PDF
    BACKGROUND: Mammographic microcalcifications represent one of the most reliable features of nonpalpable breast cancer yet remain largely unexplored and poorly understood. METHODS: We report a novel model to investigate the in vitro mineralisation potential of a panel of mammary cell lines. Primary mammary tumours were produced by implanting tumourigenic cells into the mammary fat pads of female BALB/c mice. RESULTS: Hydroxyapatite (HA) was deposited only by the tumourigenic cell lines, indicating mineralisation potential may be associated with cell phenotype in this in vitro model. We propose a mechanism for mammary mineralisation, which suggests that the balance between enhancers and inhibitors of physiological mineralisation are disrupted. Inhibition of alkaline phosphatase and phosphate transport prevented mineralisation, demonstrating that mineralisation is an active cell-mediated process. Hydroxyapatite was found to enhance in vitro tumour cell migration, while calcium oxalate had no effect, highlighting potential consequences of calcium deposition. In addition, HA was also deposited in primary mammary tumours produced by implanting the tumourigenic cells into the mammary fat pads of female BALB/c mice. CONCLUSION: This work indicates that formation of mammary HA is a cell-specific regulated process, which creates an osteomimetic niche potentially enhancing breast tumour progression. Our findings point to the cells mineralisation potential and the microenvironment regulating it, as a significant feature of breast tumour development

    ErbB2 and bone sialoprotein as markers for metastatic osteosarcoma cells

    Get PDF
    Osteosarcoma is the most common malignant bone neoplasia occurring in young patients in the first two decades of life, and represents 20% of all primitive malignant bone tumours. At present, treatment of metastatic osteosarcoma is unsatisfactory. High-dose chemotherapy followed by CD34+ leukapheresis rescue may improve these poor results. Neoplastic cells contaminating the apheresis may, however, contribute to relapse. To identify markers suitable for detecting osteosarcoma cells in aphereses we analysed the expression of bone-specific genes (Bone Sialoprotein (BSP) and Osteocalcin) and oncogenes (Met and ErbB2) in 22 patients with metastatic osteosarcoma and six healthy stem cell donors. The expression of these genes in aphereses of patients affected by metastatic osteosarcoma was assessed by RT–PCR and Southern blot analysis. Met and Osteocalcin proved to be not useful markers since they are positive in aphereses of both patients with metastatic osteosarcoma and healthy stem cell donors. On the contrary, BSP was expressed at significant levels in 85% of patients. Moreover, 18% of patients showed a strong and significantly positive (seven to 16 times higher than healthy stem cell donors) ErbB2 expression. In all positive cases, neoplastic tissue also expressed ErbB2. Our data show that ErbB2 can be a useful marker for tumour contamination in aphereses of patients affected by ErbB2-expressing osteosarcomas and that analysis of Bone Sialoprotein expression can be an alternative useful marker

    IMGT®, the international ImMunoGeneTics information system®

    Get PDF
    IMGT®, the international ImMunoGeneTics information system® (http://www.imgt.org), was created in 1989 by Marie-Paule Lefranc, Laboratoire d'ImmunoGénétique Moléculaire LIGM (Université Montpellier 2 and CNRS) at Montpellier, France, in order to standardize and manage the complexity of immunogenetics data. The building of a unique ontology, IMGT-ONTOLOGY, has made IMGT® the global reference in immunogenetics and immunoinformatics. IMGT® is a high-quality integrated knowledge resource specialized in the immunoglobulins or antibodies, T cell receptors, major histocompatibility complex, of human and other vertebrate species, proteins of the IgSF and MhcSF, and related proteins of the immune systems of any species. IMGT® provides a common access to standardized data from genome, proteome, genetics and 3D structures. IMGT® consists of five databases (IMGT/LIGM-DB, IMGT/GENE-DB, IMGT/3Dstructure-DB, etc.), fifteen interactive online tools for sequence, genome and 3D structure analysis, and more than 10 000 HTML pages of synthesis and knowledge. IMGT® is used in medical research (autoimmune diseases, infectious diseases, AIDS, leukemias, lymphomas and myelomas), veterinary research, biotechnology related to antibody engineering (phage displays, combinatorial libraries, chimeric, humanized and human antibodies), diagnostics (clonalities, detection and follow-up of residual diseases) and therapeutical approaches (graft, immunotherapy, vaccinology). IMGT is freely available at http://www.imgt.org

    Transcription profiles of non-immortalized breast cancer cell lines

    Get PDF
    BACKGROUND: Searches for differentially expressed genes in tumours have made extensive use of array technology. Most samples have been obtained from tumour biopsies or from established tumour-derived cell lines. Here we compare cultures of non-immortalized breast cancer cells, normal non-immortalized breast cells and immortalized normal and breast cancer cells to identify which elements of a defined set of well-known cancer-related genes are differentially expressed. METHODS: Cultures of cells from pleural effusions or ascitic fluids from breast cancer patients (MSSMs) were used in addition to commercially-available normal breast epithelial cells (HMECs), established breast cancer cell lines (T-est) and established normal breast cells (N-est). The Atlas Human Cancer 1.2 cDNA expression array was employed. The data obtained were analysed using widely-available statistical and clustering software and further validated through real-time PCR. RESULTS: According to Significance Analysis of Microarray (SAM) and AtlasImage software, 48 genes differed at least 2-fold in adjusted intensities between HMECs and MSSMs (p < 0.01). Some of these genes have already been directly linked with breast cancer, metastasis and malignant progression, whilst others encode receptors linked to signal transduction pathways or are otherwise related to cell proliferation. Fifty genes showed at least a 2.5-fold difference between MSSMs and T-est cells according to AtlasImage, 2-fold according to SAM. Most of these classified as genes related to metabolism and cell communication. CONCLUSION: The expression profiles of 1176 genes were determined in finite life-span cultures of metastatic breast cancer cells and of normal breast cells. Significant differences were detected between the finite life-span breast cancer cell cultures and the established breast cancer cell lines. These data suggest caution in extrapolating information from established lines for application to clinical cancer research
    corecore