1,418 research outputs found

    Seeking the Local Convergence Depth. V. Tully-Fisher Peculiar Velocities for 52 Abell Clusters

    Full text link
    We have obtained I band Tully-Fisher (TF) measurements for 522 late-type galaxies in the fields of 52 rich Abell clusters distributed throughout the sky between 50 and 200\h Mpc. Here we estimate corrections to the data for various forms of observational bias, most notably Malmquist and cluster population incompleteness bias. The bias-corrected data are applied to the construction of an I band TF template, resulting in a relation with a dispersion of 0.38 magnitudes and a kinematical zero-point accurate to 0.02 magnitudes. This represents the most accurate TF template relation currently available. Individual cluster TF relations are referred to the average template relation to compute cluster peculiar motions. The line-of-sight dispersion in the peculiar motions is 341+/-93 km/s, in general agreement with that found for the cluster sample of Giovanelli and coworkers.Comment: 31 pages, 14 figures, uses AAS LaTeX; to appear in the Astronomical Journa

    The hidden HI-massive LIRG HIZOA J0836-43: Inside-out galaxy formation

    Full text link
    HIZOA J0836-43 is an extreme gas-rich (MHIM_{\rm{HI}}=7.5\times10^{10} M_{\sun}) disk galaxy which lies hidden behind the strongly obscuring Vela region of the Milky Way. Utilizing observations from the {\it Spitzer Space Telescope}, we have found it to be a luminous infrared starburst galaxy with a star formation rate of \sim 21 M_{\sun} \rm{yr^{-1}}, arising from exceptionally strong molecular PAH emission (L_{7.7\micron} = 1.50 \times 10^{9} L_{\odot}) and far-infrared emission from cold dust. The galaxy exhibits a weak mid-infrared continuum compared to other starforming galaxies and U/LIRGs. This relative lack of emission from small grains suggests atypical interstellar medium conditions compared to other starbursts. We do not detect significant [[Ne {\sc v}]] or [[O {\sc iv}]], which implies an absent or very weak AGN. The galaxy possesses a prominent bulge of evolved stars and a stellar mass of 4.4(±\pm1.4)\times10^{10} M_{\sun}. With its plentiful gas supply and current star formation rate, a doubling of stellar mass would occur on a timescale of \sim2 Gyr. Compared to local galaxies, HIZOA J0836-43 appears to be a "scaled-up" spiral undergoing inside-out formation, possibly resembling stellar disk building processes at intermediate redshifts.Comment: 5 pages, 3 figures, 1 table; Accepted for publication in ApJL: August 25 2008. A version with full resolution figures is available at http://spider.ipac.caltech.edu/staff/jarrett/Cluver_ApJL.pd

    The Spitzer Local Volume Legacy: Survey Description and Infrared Photometry

    Get PDF
    The survey description and the near-, mid-, and far-infrared flux properties are presented for the 258 galaxies in the Local Volume Legacy (LVL). LVL is a Spitzer Space Telescope legacy program that surveys the local universe out to 11 Mpc, built upon a foundation of ultraviolet, H-alpha, and HST imaging from 11HUGS (11 Mpc H-alpha and Ultraviolet Galaxy Survey) and ANGST (ACS Nearby Galaxy Survey Treasury). LVL covers an unbiased, representative, and statistically robust sample of nearby star-forming galaxies, exploiting the highest extragalactic spatial resolution achievable with Spitzer. As a result of its approximately volume-limited nature, LVL augments previous Spitzer observations of present-day galaxies with improved sampling of the low-luminosity galaxy population. The collection of LVL galaxies shows a large spread in mid-infrared colors, likely due to the conspicuous deficiency of 8um PAH emission from low-metallicity, low-luminosity galaxies. Conversely, the far-infrared emission tightly tracks the total infrared emission, with a dispersion in their flux ratio of only 0.1 dex. In terms of the relation between infrared-to-ultraviolet ratio and ultraviolet spectral slope, the LVL sample shows redder colors and/or lower infrared-to-ultraviolet ratios than starburst galaxies, suggesting that reprocessing by dust is less important in the lower mass systems that dominate the LVL sample. Comparisons with theoretical models suggest that the amplitude of deviations from the relation found for starburst galaxies correlates with the age of the stellar populations that dominate the ultraviolet/optical luminosities.Comment: Accepted for publication in ApJ; Figures 1,8,9 provided as jpeg

    An Accounting of the Dust-Obscured Star Formation and Accretion Histories Over the Last ~11~Billion Years

    Get PDF
    (Abridged) We report on an accounting of the star formation and accretion driven energetics of 24um detected sources in GOODS North. For sources having infrared (IR; 8-1000um) luminosities >3x10^12 L_sun when derived by fitting local SEDs to 24um photometry alone, we find these IR luminosity estimates to be a factor of ~4 times larger than those estimated when the SED fitting includes additional 16 and 70um data (and in some cases mid-infrared spectroscopy and 850um data). This discrepancy arises from the fact that high luminosity sources at z>>0 appear to have far- to mid-infrared ratios, as well as aromatic feature equivalent widths, typical of lower luminosity galaxies in the local Universe. Using our improved estimates for IR luminosity and AGN contributions, we investigate the evolution of the IR luminosity density versus redshift arising from star formation and AGN processes alone. We find that, within the uncertainties, the total star formation driven IR luminosity density is constant between 1.15 < z < 2.35, although our results suggest a slightly larger value at z>2. AGN appear to account for <18% of the total IR luminosity density integrated between 0< z < 2.35, contributing <25% at each epoch. LIRG appear to dominate the star formation rate (SFR) density along with normal star-forming galaxies (L_IR < 10^11 L_sun) between 0.6 < z < 1.15. Once beyond z >2, the contribution from ultraluminous infrared galaxies ULIRGs becomes comparable with that of LIRGs. Using our improved IR luminosity estimates, we find existing calibrations for UV extinction corrections based on measurements of the UV spectral slope typically overcorrect UV luminosities by a factor of ~2, on average, for our sample of 24um-selected sources; accordingly we have derived a new UV extinction correction more appropriate for our sample.Comment: Accepted for publication in Ap

    Modeling the Effects of Star Formation Histories on Halpha and Ultra-Violet Fluxes in Nearby Dwarf Galaxies

    Get PDF
    We consider the effects of non-constant star formation histories (SFHs) on Halpha and GALEX far ultra-violet (FUV) star formation rate (SFR) indicators. Under the assumption of a fully populated Chabrier IMF, we compare the distribution of Halpha-to-FUV flux ratios from ~ 1500 simple, periodic model SFHs with observations of 185 galaxies from the Spitzer Local Volume Legacy survey. We find a set of SFH models that are well matched to the data, such that more massive galaxies are best characterized by nearly constant SFHs, while low mass systems experience bursts amplitudes of ~ 30 (i.e., an increase in the SFR by a factor of 30 over the SFR during the inter-burst period), burst durations of tens of Myr, and periods of ~ 250 Myr; these SFHs are broadly consistent with the increased stochastic star formation expected in systems with lower SFRs. We analyze the predicted temporal evolution of galaxy stellar mass, R-band surface brightness, Halpha-derived SFR, and blue luminosity, and find that they provide a reasonable match to observed flux distributions. We find that our model SFHs are generally able to reproduce both the observed systematic decline and increased scatter in Halpha-to-FUV ratios toward low mass systems, without invoking other physical mechanisms. We also compare our predictions with those from the Integrated Galactic IMF theory with a constant SFR. We find that while both predict a systematic decline in the observed ratios, only the time variable SFH models are capable of producing the observed population of low mass galaxies (MM_{*} < 107^{7} Msun) with normal Halpha-to-FUV ratios. These results demonstrate that a variable IMF alone has difficulty explaining the observed scatter in the Halpha-to-FUV ratios. We conclude by considering the limitations of the model SFHs, and discuss the use of additional empirical constraints to improve future SFH modeling efforts.Comment: 15 pages, 11 Figures. Accepted for publication in Ap

    The Initial Mass Function in disc galaxies and in galaxy clusters: the chemo-photometric picture

    Full text link
    The observed brightness of the Tully-Fisher relation suggests a low stellar M/L ratio and a "bottom-light" IMF in disc galaxies, but the corresponding efficiency of chemical enrichment tends to exceed the observational estimates. Either suitable tuning of the IMF slope and mass limits or metal outflows from disc galaxies must then be invoked. A standard Solar Neighbourhood IMF cannot explain the high metallicity of the hot intra-cluster medium: a different IMF must be at work in clusters of galaxies. Alternatively, if the IMF is universal and chemical enrichment is everywhere as efficient as observed in clusters, substantial loss of metals must occur from the Solar Neighbourhood and from disc galaxies in general; a "non-standard" scenario challenging our understanding of disc galaxy formation.Comment: 6 pages, 4 figures; in Proceedings of IMF@50: the Initial Mass Function 50 years later; Corbelli, Palla and Zinnecker (eds.

    Far-Infrared Properties of Spitzer-selected Luminous Starbursts

    Get PDF
    We present SHARC-2 350 micron data on 20 luminous z ~ 2 starbursts with S(1.2mm) > 2 mJy from the Spitzer-selected samples of Lonsdale et al. and Fiolet et al. All the sources were detected, with S(350um) > 25 mJy for 18 of them. With the data, we determine precise dust temperatures and luminosities for these galaxies using both single-temperature fits and models with power-law mass--temperature distributions. We derive appropriate formulae to use when optical depths are non-negligible. Our models provide an excellent fit to the 6um--2mm measurements of local starbursts. We find characteristic single-component temperatures T1 ~ 35.5+-2.2 K and integrated infrared (IR) luminosities around 10^(12.9+-0.1) Lsun for the SWIRE-selected sources. Molecular gas masses are estimated at 4 x 10^(10) Msun, assuming kappa(850um)=0.15 m^2/kg and a submillimeter-selected galaxy (SMG)-like gas-to-dust mass ratio. The best-fit models imply >~2 kpc emission scales. We also note a tight correlation between rest-frame 1.4 GHz radio and IR luminosities confirming star formation as the predominant power source. The far-IR properties of our sample are indistinguishable from the purely submillimeter-selected populations from current surveys. We therefore conclude that our original selection criteria, based on mid-IR colors and 24 um flux densities, provides an effective means for the study of SMGs at z ~ 1.5--2.5.Comment: 13 pages, 4 figures, edited to match published version in ApJ 717, 29-39 (2010

    A mathematical model for fibro-proliferative wound healing disorders

    Get PDF
    The normal process of dermal wound healing fails in some cases, due to fibro-proliferative disorders such as keloid and hypertrophic scars. These types of abnormal healing may be regarded as pathologically excessive responses to wounding in terms of fibroblastic cell profiles and their inflammatory growth-factor mediators. Biologically, these conditions are poorly understood and current medical treatments are thus unreliable. In this paper, the authors apply an existing deterministic mathematical model for fibroplasia and wound contraction in adult mammalian dermis (Olsenet al., J. theor. Biol. 177, 113–128, 1995) to investigate key clinical problems concerning these healing disorders. A caricature model is proposed which retains the fundamental cellular and chemical components of the full model, in order to analyse the spatiotemporal dynamics of the initiation, progression, cessation and regression of fibro-contractive diseases in relation to normal healing. This model accounts for fibroblastic cell migration, proliferation and death and growth-factor diffusion, production by cells and tissue removal/decay. Explicit results are obtained in terms of the model processes and parameters. The rate of cellular production of the chemical is shown to be critical to the development of a stable pathological state. Further, cessation and/or regression of the disease depend on appropriate spatiotemporally varying forms for this production rate, which can be understood in terms of the bistability of the normal dermal and pathological steady states—a central property of the model, which is evident from stability and bifurcation analyses. The work predicts novel, biologically realistic and testable pathogenic and control mechanisms, the understanding of which will lead toward more effective strategies for clinical therapy of fibro-proliferative disorders

    Active Disk Building in a local HI-Massive LIRG: The Synergy between Gas, Dust, and Star Formation

    Get PDF
    HIZOA J0836-43 is the most HI-massive (M_HI = 7.5x10^10 Msun) galaxy detected in the HIPASS volume and lies optically hidden behind the Milky Way. Markedly different from other extreme HI disks in the local universe, it is a luminous infrared galaxy (LIRG) with an actively star forming disk (>50 kpc), central to its ~ 130 kpc gas disk, with a total star formation rate (SFR) of ~20.5 Msun yr^{-1}. Spitzer spectroscopy reveals an unusual combination of powerful polycyclic aromatic hydrocarbon (PAH) emission coupled to a relatively weak warm dust continuum, suggesting photodissociation region (PDR)-dominated emission. Compared to a typical LIRG with similar total infrared luminosity (L_TIR=10^11 Lsun), the PAHs in HIZOA J0836-43 are more than twice as strong, whereas the warm dust continuum (lambda > 20micron) is best fit by a star forming galaxy with L_TIR=10^10 Lsun. Mopra CO observations suggest an extended molecular gas component (H_2 + He > 3.7x10^9 Msun) and a lower limit of ~ 64% for the gas mass fraction; this is above average compared to local disk systems, but similar to that of z~1.5 BzK galaxies (~57%). However, the star formation efficiency (SFE = L_IR/L'_CO) for HIZOA J0836-43 of 140 Lsun (K km s^{-1} pc^2)^{-1} is similar to that of local spirals and other disk galaxies at high redshift, in strong contrast to the increased SFE seen in merging and strongly interacting systems. HIZOA J0836-43 is actively forming stars and building a massive stellar disk. Its evolutionary phase of star formation (M_stellar, SFR, gas fraction) compared to more distant systems suggests that it would be considered typical at redshift z~1. This galaxy provides a rare opportunity in the nearby universe for studying (at z~0.036) how disks were building and galaxies evolving at z~1, when similarly large gas fractions were likely more common.Comment: Accepted for publication in The Astrophysical Journal. 16 pages, 8 figure

    Critical Race Theory and Education: racism and anti-racism in educational theory and praxis

    Get PDF
    What is Critical Race Theory (CRT) and what does it offer educational researchers and practitioners outside the US? This paper addresses these questions by examining the recent history of antiracist research and policy in the UK. In particular, the paper argues that conventional forms of antiracism have proven unable to keep pace with the development of increasingly racist and exclusionary education polices that operate beneath a veneer of professed tolerance and diversity. In particular, contemporary antiracism lacks clear statements of principle and theory that risk reinventing the wheel with each new study; it is increasingly reduced to a meaningless slogan; and it risks appropriation within a reformist “can do” perspective dominated by the de-politicized and managerialist language of school effectiveness and improvement. In contrast, CRT offers a genuinely radical and coherent set of approaches that could revitalize critical research in education across a range of inquiries, not only in self-consciously "multicultural" studies. The paper reviews the developing terrain of CRT in education, identifying its key defining elements and the conceptual tools that characterise the work. CRT in education is a fast changing and incomplete project but it can no longer be ignored by the academy beyond North America
    corecore