3,644 research outputs found

    Far infrared spectroscopy on the three-dimensional dilute antiferromagnet Fe(x)Zn(1-x)F2

    Full text link
    Fourier-transform Infrared (FT-IR) Spectroscopy measurements have been performed on the three-dimensional dilute antiferromagnet Fe(x)Zn(1-x)F2 with x=0.99 ~ 0.58 in far infrared (FIR) region. The FIR spectra are analyzed taking into account the ligand field and the local exchange interaction probability with J1 ~ J3; |J1|,|J3|<<|J2|, where J1, J2 and J3 are the nearest neighbor, second nearest neighbor and third nearest neighbor exchange interaction constants, respectively. The concentration dependence of the FIR spectra at low temperature is qualitatively well reproduced by our analysis, though some detailed structure remains unexplained.Comment: 10 pages, 3 figure

    Light mixed sneutrinos as thermal dark matter

    Full text link
    In supersymmetric models with Dirac neutrino masses, a left-right mixed sneutrino can be a viable dark matter candidate. We examine the MSSM+ν~R\tilde\nu_R parameter space where this is the case with particular emphasis on light sneutrinos with masses below 10 GeV. We discuss implications for direct and indirect dark matter searches, including the relevant uncertainties, as well as consequences for collider phenomenology.Comment: 33 pages, 14 figures; one figure and references adde

    Ordering in the dilute weakly-anisotropic antiferromagnet Mn(0.35)Zn(0.65)F2

    Full text link
    The highly diluted antiferromagnet Mn(0.35)Zn(0.65)F2 has been investigated by neutron scattering in zero field. The Bragg peaks observed below the Neel temperature TN (approximately 10.9 K) indicate stable antiferromagnetic long-range ordering at low temperature. The critical behavior is governed by random-exchange Ising model critical exponents (nu approximately 0.69 and gamma approximately 1.31), as reported for Mn(x)Zn(1-x)F2 with higher x and for the isostructural compound Fe(x)Zn(1-x)F2. However, in addition to the Bragg peaks, unusual scattering behavior appears for |q|>0 below a glassy temperature Tg approximately 7.0 K. The glassy region T<Tg corresponds to that of noticeable frequency dependence in earlier zero-field ac susceptibility measurements on this sample. These results indicate that long-range order coexists with short-range nonequilibrium clusters in this highly diluted magnet.Comment: 7 pages, 5 figure

    GRACE at ONE-LOOP: Automatic calculation of 1-loop diagrams in the electroweak theory with gauge parameter independence checks

    Full text link
    We describe the main building blocks of a generic automated package for the calculation of Feynman diagrams. These blocks include the generation and creation of a model file, the graph generation, the symbolic calculation at an intermediate level of the Dirac and tensor algebra, implementation of the loop integrals, the generation of the matrix elements or helicity amplitudes, methods for the phase space integrations and eventually the event generation. The report focuses on the fully automated systems for the calculation of physical processes based on the experience in developing GRACE-loop. As such, a detailed description of the renormalisation procedure in the Standard Model is given emphasizing the central role played by the non-linear gauge fixing conditions for the construction of such automated codes. The need for such gauges is better appreciated when it comes to devising efficient and powerful algorithms for the reduction of the tensorial structures of the loop integrals. A new technique for these reduction algorithms is described. Explicit formulae for all two-point functions in a generalised non-linear gauge are given, together with the complete set of counterterms. We also show how infrared divergences are dealt with in the system. We give a comprehensive presentation of some systematic test-runs which have been performed at the one-loop level for a wide variety of two-to-two processes to show the validity of the gauge check. These cover fermion-fermion scattering, gauge boson scattering into fermions, gauge bosons and Higgs bosons scattering processes. Comparisons with existing results on some one-loop computation in the Standard Model show excellent agreement. We also briefly recount some recent development concerning the calculation of mutli-leg one-loop corrections.Comment: 131 pages. Manuscript expanded quite substantially with the inclusion of an overview of automatic systems for the calculation of Feynman diagrams both at tree-level and one-loop. Other additions include issues of regularisation, width effects and renormalisation with unstable particles and reduction of 5- and 6-point functions. This is a preprint version, final version to appear as a Phys. Re

    How light can the lightest neutralino be?

    Full text link
    In this talk we summarize previous work on mass bounds of a light neutralino in the Minimal Supersymmetric Standard Model. We show that without the GUT relation between the gaugino mass parameters M_1 and M_2, the mass of the lightest neutralino is essentially unconstrained by collider bounds and precision observables. We conclude by considering also the astrophysics and cosmology of a light neutralino.Comment: 6 pages, 3 figures, to appear in the proceedings of the 16th International Symposium on Particles, Strings and Cosmology (PASCOS2010), Valencia (Spain), July 19th - 23rd, 201

    Random field spin models beyond one loop: a mechanism for decreasing the lower critical dimension

    Full text link
    The functional RG for the random field and random anisotropy O(N) sigma-models is studied to two loop. The ferromagnetic/disordered (F/D) transition fixed point is found to next order in d=4+epsilon for N > N_c (N_c=2.8347408 for random field, N_c=9.44121 for random anisotropy). For N < N_c the lower critical dimension plunges below d=4: we find two fixed points, one describing the quasi-ordered phase, the other is novel and describes the F/D transition. The lower critical dimension can be obtained in an (N_c-N)-expansion. The theory is also analyzed at large N and a glassy regime is found.Comment: 4 pages, 5 figure

    Surface criticality in random field magnets

    Get PDF
    The boundary-induced scaling of three-dimensional random field Ising magnets is investigated close to the bulk critical point by exact combinatorial optimization methods. We measure several exponents describing surface criticality: β1\beta_1 for the surface layer magnetization and the surface excess exponents for the magnetization and the specific heat, βs\beta_s and αs\alpha_s. The latter ones are related to the bulk phase transition by the same scaling laws as in pure systems, but only with the same violation of hyperscaling exponent θ\theta as in the bulk. The boundary disorders faster than the bulk, and the experimental and theoretical implications are discussed.Comment: 6 pages, 9 figures, to appear in Phys. Rev.

    Critical X-ray Scattering Studies of Jahn-Teller Phase Transitions in TbV1x_{1-x}Asx_{x}O4_{4}

    Full text link
    The critical behaviour associated with cooperative Jahn-Teller phase transitions in TbV1x_{1-x}Asx_{x}O4_{4} (where \textit{x} = 0, 0.17, 1) single crystals have been studied using high resolution x-ray scattering. These materials undergo continuous tetragonal \to orthorhombic structural phase transitions driven by Jahn-Teller physics at TC_C = 33.26(2) K, 30.32(2) K and 27.30(2) K for \textit{x} = 0, 0.17 and 1 respectively. The orthorhombic strain was measured close to the phase transition and is shown to display mean field behavior in all three samples. Pronounced fluctuation effects are manifest in the longitudinal width of the Bragg scattering, which diverges as a power law, with an exponent given by x=0.45±0.04x=0.45 \pm 0.04, on approaching the transition from either above or below. All samples exhibited twinning; however the disordered x = 0.17 sample showed a broad distribution of twins which were stable to relatively low temperatures, well below TC_C. This indicates that while the orthorhombic strain continues to develop in a conventional mean field manner in the presence of disorder, twin domains are easily pinned by the quenched impurities and their associated random strains.Comment: 8 pages, 6 figure

    Summary of the 13th IACHEC Meeting

    Get PDF
    We summarize the outcome of the 13th meeting of the International Astronomical Consortium for High Energy Calibration (IACHEC), held at Tenuta dei Ciclamini (Avigliano Umbro, Italy) in April 2018. Fifty-one scientists directly involved in the calibration of operational and future high-energy missions gathered during 3.5 days to discuss the current status of the X-ray payload inter-calibration and possible approaches to improve it. This summary consists of reports from the various working groups with topics ranging from the identification and characterization of standard calibration sources, multi-observatory cross-calibration campaigns, appropriate and new statistical techniques, calibration of instruments and characterization of background, and communication and preservation of knowledge and results for the benefit of the astronomical community.Comment: 12 page

    Ground state structure of diluted antiferromagnets and random field systems

    Full text link
    A method is presented for the calculation of all exact ground states of diluted antiferromagnets and random field systems in an arbitrary range of fields. It works by calculating all jump-fields B,\Delta where the system changes it's ground state. For each field value all degenerated ground states are represented by a set of (anti-) ferromagnetic clusters and a relation between the clusters. So a complete description of the ground state structure of these systems is possible. Systems are investigated up to size 48^3 on the whole field-range and up to 160^3 for some particular fields. The behavior of order parameters is investigated, the number of jumps is analyzed and the degree of degeneracy as functions of size and fields is calculated.Comment: 11 pages, 13 figures, LaTex, submitted to Physica
    corecore