1,349 research outputs found

    A supersymmetric multicritical point in a model of lattice fermions

    Get PDF
    We study a model of spinless fermions with infinite nearest-neighbor repulsion on the square ladder which has microscopic supersymmetry. It has been conjectured that in the continuum the model is described by the superconformal minimal model with central charge c=3/2. Thus far it has not been possible to confirm this conjecture due to strong finite-size corrections in numerical data. We trace the origin of these corrections to the presence of unusual marginal operators that break Lorentz invariance, but preserve part of the supersymmetry. By relying mostly on entanglement entropy calculations with the density-matrix renormalization group, we are able to reduce finite-size effects significantly. This allows us to unambiguously determine the continuum theory of the model. We also study perturbations of the model and establish that the supersymmetric model is a multicritical point. Our work underlines the power of entanglement entropy as a probe of the phases of quantum many-body systems.Comment: 16 pages, 8 figure

    The bistable mitotic switch in fission yeast

    Get PDF
    In favorable conditions, eukaryotic cells proceed irreversibly through the cell division cycle (G1-S-G2-M) in order to produce two daughter cells with the same number and identity of chromosomes of their progenitor. The integrity of this process is maintained by 'checkpoints' that hold a cell at particular transition points of the cycle until all requisite events are completed. The crucial functions of these checkpoints seem to depend on irreversible bistability of the underlying checkpoint control systems. Bistability of cell cycle transitions has been confirmed experimentally in frog egg extracts, budding yeast cells and mammalian cells. For fission yeast cells, a recent paper by Patterson et al. (2021) provides experimental evidence for an abrupt transition from G2 phase into mitosis, and we show that these data are consistent with a stochastic model of a bistable switch governing the G2/M checkpoint. Interestingly, our model suggests that their experimental data could also be explained by a reversible/sigmoidal switch, and stochastic simulations confirm this supposition. We propose a simple modification of their experimental protocol that could provide convincing evidence for (or against) bistability of the G2/M transition in fission yeast

    Size control in growing yeast and mammalian cells

    Get PDF
    BACKGROUND: In a recent publication it was claimed that cultured mammalian cells, in contrast to yeasts, maintain a constant size distribution in the population without a size checkpoint. This inference may be challengeable. RESULTS: (1) It is argued that "weak" size control implies the existence of a checkpoint, and unfortunately the technique used by Conlon and Raff might obscure such a weak mechanism. (2) Previous investigations of size control in yeasts have shown that individual cell data, rather than means and variances of cell populations, are prerequisites for reliable interpretation. (3) No experimental data so far obtained suggest that in any cell culture a linear growth pattern in cell mass can maintain size homeostasis on its own without size control. (4) Studies on fission yeast mutants indicate that the molecular mechanisms of size control vary with genetic background, implying that no single mechanism is likely to apply to any cell type, including cultured mammalian cells, under all conditions. CONCLUSION: The claim that cultured mammalian cells maintain size homeostasis without a checkpoint needs to be re-evaluated by measurements on individual cells

    On the size and shape of excluded volume polymers confined between parallel plates

    Full text link
    A number of recent experiments have provided detailed observations of the configurations of long DNA strands under nano-to-micrometer sized confinement. We therefore revisit the problem of an excluded volume polymer chain confined between two parallel plates with varying plate separation. We show that the non-monotonic behavior of the overall size of the chain as a function of plate-separation, seen in computer simulations and reproduced by earlier theories, can already be predicted on the basis of scaling arguments. However, the behavior of the size in a plane parallel to the plates, a quantity observed in recent experiments, is predicted to be monotonic, in contrast to the experimental findings. We analyze this problem in depth with a mean-field approach that maps the confined polymer onto an anisotropic Gaussian chain, which allows the size of the polymer to be determined separately in the confined and unconfined directions. The theory allows the analytical construction of a smooth cross-over between the small plate-separation de Gennes regime and the large plate-separation Flory regime. The results show good agreement with Langevin dynamics simulations, and confirm the scaling predictions.Comment: 15 pages, 3 figure

    A model for the orientational ordering of the plant microtubule cortical array

    Full text link
    The plant microtubule cortical array is a striking feature of all growing plant cells. It consists of a more or less homogeneously distributed array of highly aligned microtubules connected to the inner side of the plasma membrane and oriented transversely to the cell growth axis. Here we formulate a continuum model to describe the origin of orientational order in such confined arrays of dynamical microtubules. The model is based on recent experimental observations that show that a growing cortical microtubule can interact through angle dependent collisions with pre-existing microtubules that can lead either to co-alignment of the growth, retraction through catastrophe induction or crossing over the encountered microtubule. We identify a single control parameter, which is fully determined by the nucleation rate and intrinsic dynamics of individual microtubules. We solve the model analytically in the stationary isotropic phase, discuss the limits of stability of this isotropic phase, and explicitly solve for the ordered stationary states in a simplified version of the model.Comment: 15 pages, 5 figure

    Mathematical model of the morphogenesis checkpoint in budding yeast

    Get PDF
    The morphogenesis checkpoint in budding yeast delays progression through the cell cycle in response to stimuli that prevent bud formation. Central to the checkpoint mechanism is Swe1 kinase: normally inactive, its activation halts cell cycle progression in G2. We propose a molecular network for Swe1 control, based on published observations of budding yeast and analogous control signals in fission yeast. The proposed Swe1 network is merged with a model of cyclin-dependent kinase regulation, converted into a set of differential equations and studied by numerical simulation. The simulations accurately reproduce the phenotypes of a dozen checkpoint mutants. Among other predictions, the model attributes a new role to Hsl1, a kinase known to play a role in Swe1 degradation: Hsl1 must also be indirectly responsible for potent inhibition of Swe1 activity. The model supports the idea that the morphogenesis checkpoint, like other checkpoints, raises the cell size threshold for progression from one phase of the cell cycle to the next

    Fuel quality/processing study. Volume 2: Appendix. Task 1 literature survey

    Get PDF
    The results of a literature survey of fuel processing and fuel quality are given. Liquid synfuels produced from coal and oil shale are discussed. Gas turbine fuel property specifications are discussed. On-site fuel pretreatment and emissions from stationary gas turbines are discussed. Numerous data tables and abstracts are given
    • …
    corecore