84 research outputs found
Heterobostrychus hamatipennis Lesne (Coleoptera: Bostrichidae) new to Florida
Heterobostrychus hamatipennis Lesne, an oriental wood borer, is reported to be established in southeast Florida for the first time. This is the second member of the genus Heterobostrychus Lesne that has become established in Florida
Three bostrichid beetles new to Florida (Coleoptera: Bostrichidae)
Three species ofbostrichid beetles, previously unknown from Florida, were found in the Florida State Collection of Arthropods (FSCA) and in the Archbold Biological Station Collection. The genus Stephanopachys Waterhouse, in Florida, is now represented by four species. These new records probably represent infrequently collected species and not new introductions to Florida. Akey to all species of Stephanopachys adults from Florida is presented
Study of the vocabulary development in selected first grade readers
Because of the great number of new reading series now on the market, the writer was prompted to examine four recent reading series with respect to the similarities and differences in their vocabulary development. The study included the approach, or method, used to develop the vocabulary and also the type and load of vocabulary in each series
A Rapid Technique for Counting Cracks in Rocks
Using a scanning electron microscope (SEM) and an image analyzer, we have developed a technique for counting and measuring cracks in rocks which is more efficient than traditional techniques in which an operator performs all image analysis functions. The key aspect of the technique is that black-on-white tracings of fresh cracks, which can be made rather rapidly by an operator, are measured and digitized by an image analyzer. The most time-consuming step in the process has now become the generation of SEM micrographs and pertinent chemical (mineralogical) information, not the quantification of crack structure. The technique has been applied to two studies involving nuclear waste isolation in a granitic rock, Climax Stock (Nevada Test Site) quartz monzonite, a Cretaceous age rock which is structurally very inhomogeneous. One study detected a relationship between crack structure and distance from a hammer-drilled borehole; the other study was unable to detect a relationship between crack structure and gamma irradiation treatment in rocks loaded to near failure
SEM studies of stressed and irradiated Climax Stock quartz monzonite
In an effort to find the mechanism by which gamma irradiation weakens the unconfined compressive strength of Climax Stock quartz monzonite (CSQM), sections of rock which had been irradiated and loaded to near failure were studied by scanning electron microscopy and compared to sections of rock which had been loaded but not irradiated. The quantities measured and compared were numbers and lengths of microfractures in the rock. We found that the crack parameters depended neither on irradiation treatment nor even on stress history, except in one sample which actually failed. By comparison to cracks counted in other granites by other workers, the crack statistics on CSQM are much noisier and much less indicative of stress history. CSQM is structurally more heterogeneous than the other granites, which is probably the cause of the greater noise level. 12 references, 3 figures, 5 tables
Making Space, Engaging Students: How One Department Built Outreach into Our Community of Practice
Reed College is a small liberal arts college located in Portland, Oregon. Students work and study on a mostly residential campus and the library has historically been the heart of academic and campus life. This relationship was disrupted by the COVID-19 pandemic as Reed shifted to online learning and library staff worked remotely. After more than a year, students and library staff returned to campus but other disruptions impacted student use of services and physical library space. A major seismic renovation closed a large section of the library. During this 18-month renovation, almost 40 percent of library seating and assigned desks were unavailable for student use. These major disruptions meant that both incoming and some upper-level students had no established relationship to the library beyond virtual interactions. It became evident there was a need to re-engage and re-energize students’ relationship with all aspects of library spaces and services
Physical and chemical changes to rock near electrically heated boreholes at Spent Fuel Test-Climax
Sections of Climax Stock quartz monzonite taken from the vicinity of two electrically heated boreholes at Spent Fuel Test-Climax (SFT-C) have been studied by scanning electron microscopy and optical microscopy for signs of changes in crack structure and in mineralogy resulting from operations at SFT-C. The crack structure, as measured by density of cracks and average crack lengths was found not to have changed as a result of heating, regardless of distance from the heater hole. However, rock near the heater borehole sampled in the north heater drift was found to be more cracked than rock near the borehole sampled in the south heater drift. Mineralogically, the post-test samples are identical to the pre-test samples. No new phases have been formed as a result of the test. 10 refs., 6 figs., 8 tabs
Recommended from our members
Report on the feasibility of using isotopes to source and age-date groundwater in Orange County water district`s Forebay region
From March to September 1995, the Isotope Sciences Division of Lawrence Livermore National Laboratory performed isotopic measurements on water in the Orange County Forebay region. The goal was to test the applicability of isotope techniques for determining the current groundwater flow paths and flow rates in the OCWD spreading facilities. Successful results could then be used to predict the fate of proposed reclaimed waste water recharge. Stable isotope measurements in surface waters and groundwaters in the Forebay region of the Orange County groundwater basin provided a general source indicator. The data defined three general groups: (1) groundwater derived from recharged Santa Ana River water (SAR),(2) groundwater resulting from a mixture of recharged Colorado River water and the SAR, and (3) groundwater recharged from the Santiago basin area. In the first group of data, recharge directly from the SAR flow was not readily distinguishable from groundwater recharged via the spreading ponds. Some groundwater samples from Forebay wells showed significant temporal variability in stable isotope values, while others remained constant throughout the study period. The temporal changes in the groundwater stable isotope signatures are believed to be controlled by similar variations in the stable isotope signatures of the surface water recharge. With further sampling, these seasonal isotopic variations may provide a viable tracer for young (<2 years) groundwater
Recommended from our members
Hydrothermal interaction of solid wafers of Topopah Spring Tuff with J-13 water and distilled water at 90, 150, and 250{sup 0}C, using Dickson-type, gold-bag rocking autoclaves
The Nevada Nuclear Waste Storage Investigations Project has conducted experiments to study the hydrothermal interaction of rock and water representative of a potential high-level waste repository at Yucca Mountain, Nevada. The results of these experiments help define the near-field repository environment during and shortly after the thermal period that results from the emplacement of nuclear waste. When considered in conjunction with results contained in companion reports, these results can be used to assess our ability to accelerate tests using the surface area/volume parameter and/or temperature. These rock-water interaction experiments were conducted with solid polished wafers cut from both drillcore and outcrop samples of Topopah tuff, using both a natural ground water and distilled water as the reacting fluid. Pre- and post-test characterization of the reacting materials was extensive. Post-test identification and chemical analysis of secondary phases resulting from the hydrothermal interactions were aided by using monoliths of tuff rather than crushed material. All experiments were run in Dickson-type, gold-bag rocking autoclaves that were periodically sampled at in situ conditions. A total of nine short-term (up to 66-day) experiments were run in this series; these experiments covered the range from 90 to 250{sup 0}C and from 50 to 100 bar. The results obtained from the experiments have been used to evaluate the modeled results produced by calculations using the geochemical reaction process code EQ3/6. 31 refs., 37 figs., 7 tabs
Hydrothermal Interaction of Topopah Spring Tuff With J-13 Water as a Function of Temperature
In support of the Nevada Nuclear Waste Storage Investigations Project experiments were conducted to study the hydrothermal interaction of rock and water representative of a potential repository in tuff. These experiments provided data relevant to near-field repository conditions that can be used to: assess the ability to use accelerated tests based on the SA/V (surface area/volume) parameter and temperature; allow the measurement of chemical changes in phases present in the tuff before reaction as well as the identification and chemical analysis of secondary phases resulting from hydrothermal reactions; and demonstrate the usefulness of geochemical modeling in a repository environment using the EQ3/6 thermodynamic/kinetic geochemical modeling code. Crushed tuff and polished wafers of tuff were reacted with a natural ground water in Dickson-type gold-cell rocking autoclaves which were periodically sampled under in-situ conditions. Results were compared with predictions based on the EQ3/6 geochemical modeling code. Eight short-term experiments (2 to 3 months) at 150{sup 0}C and 250{sup 0}C have been completed using tuff from both drillcore and outcrop. Long-term experiments at 90{sup 0}C and 150{sup 0}C using drillcore polished wafers are in progress. This paper will focus on the results of the 150{sup 0}C and 250{sup 0}C experiments using drill core polished wafers. 11 references, 4 figures
- …