11 research outputs found
Predicting human mobility through the assimilation of social media traces into mobility models
Predicting human mobility flows at different spatial scales is challenged by
the heterogeneity of individual trajectories and the multi-scale nature of
transportation networks. As vast amounts of digital traces of human behaviour
become available, an opportunity arises to improve mobility models by
integrating into them proxy data on mobility collected by a variety of digital
platforms and location-aware services. Here we propose a hybrid model of human
mobility that integrates a large-scale publicly available dataset from a
popular photo-sharing system with the classical gravity model, under a stacked
regression procedure. We validate the performance and generalizability of our
approach using two ground-truth datasets on air travel and daily commuting in
the United States: using two different cross-validation schemes we show that
the hybrid model affords enhanced mobility prediction at both spatial scales.Comment: 17 pages, 10 figure
Geolocalizaci贸n de usuarios en Twitter utilizando redes convolucionales de grafos
En este trabajo utilizamos un conjunto de datos recolectados de la red social Twitter con el objetivo de analizar el desempe帽o de distintos modelos que proponemos para determinar la geolocalizaci贸n聽de los usuarios de la plataforma. Tambi茅n realizamos un an谩lisis sobre聽los perfiles de los usuarios para verificar qu茅 tan fiable puede ser la determinaci贸n de su residencia. En el art铆culo detallamos distintas formas聽de construir las redes que modelan las relaciones entre los usuarios a聽fin de mejorar la estimaci贸n de su ubicaci贸n, con sus respectivas ventajas y desventajas. Por 煤ltimo, explicamos nuestro procedimiento para la聽detecci贸n de t茅rminos locales, y la conformaci贸n de secuencias para los聽m茅todos basados en redes neuronales.Sociedad Argentina de Inform谩tica e Investigaci贸n Operativ
Router-level community structure of the Internet Autonomous Systems
The Internet is composed of routing devices connected between them and
organized into independent administrative entities: the Autonomous Systems. The
existence of different types of Autonomous Systems (like large connectivity
providers, Internet Service Providers or universities) together with
geographical and economical constraints, turns the Internet into a complex
modular and hierarchical network. This organization is reflected in many
properties of the Internet topology, like its high degree of clustering and its
robustness.
In this work, we study the modular structure of the Internet router-level
graph in order to assess to what extent the Autonomous Systems satisfy some of
the known notions of community structure. We show that the modular structure of
the Internet is much richer than what can be captured by the current community
detection methods, which are severely affected by resolution limits and by the
heterogeneity of the Autonomous Systems. Here we overcome this issue by using a
multiresolution detection algorithm combined with a small sample of nodes. We
also discuss recent work on community structure in the light of our results