30 research outputs found
Vegetation diversity in East African wetlands : Cocktail algorithms supported by a vegetation-plot database
Aims: Wetlands in East Africa are important ecosystems for biodiversity conservation and ecosystem service provisioning, yet threatened by degradation and conversion into croplands. Conservation and land use management require data on vegetation structure and dynamics. The presented work is a response to a lacking consistent classification of East African wetland vegetation. Location: Namulonge valley in Uganda and Kilombero floodplain in Tanzania. Methods: We sampled 431 4 m²-plots along land use intensity and flooding duration gradients. A floristic classification using the cocktail method was performed in a two-step approach. We developed definitions for vegetation units, using plot observations from the study sites in a first step and revised them in a second step by adding data from a vegetation-plot database and complied the definitions to an expert system for classification. Resulting vegetation units were analyzed regarding their life form composition, for which we implemented a classification based on life span and growth form. Following a literature review, the identified vegetation units were assigned either to existing phytosociological associations or proposals. Results: We recognize eight units of marsh and reed vegetation (class Phragmito-Magno-Caricetea) and five units of weed and pioneer vegetation under semi-aquatic conditions (class Oryzetea sativae). Five of these associations were previously described in the bibliographic references. The remaining eight are newly described in this work. The associations contrast in their life form composition with the five Oryzetea sativae associations dominated by obligate annuals and the Phragmito-Magno-Caricetea associations dominated by either reed plants or lacking a dominating life form. Conclusions: The developed expert system enables a comparison of wetland vegetation in the East African region and will support vegetation science and informed decision making about land use management and conservation. The two-step approach of revising a classification developed for single wetlands with a database is promising for data-scarce regions. Nomenclature: Haines & Lye (1983); CJBG & SANBI (2012); The Plant List (2013); TNRS (2018). Abbreviations: DCA = Detrended Correspondence Analysis; DRC = Democratic Republic of the Congo; MRPP = Multiple Response Permutation Procedure
Fundamental scaling laws of on-off intermittency in a stochastically driven dissipative pattern forming system
Noise driven electroconvection in sandwich cells of nematic liquid crystals
exhibits on-off intermittent behaviour at the onset of the instability. We
study laser scattering of convection rolls to characterize the wavelengths and
the trajectories of the stochastic amplitudes of the intermittent structures.
The pattern wavelengths and the statistics of these trajectories are in
quantitative agreement with simulations of the linearized electrohydrodynamic
equations. The fundamental distribution law for the durations
of laminar phases as well as the power law of the amplitude distribution
of intermittent bursts are confirmed in the experiments. Power spectral
densities of the experimental and numerically simulated trajectories are
discussed.Comment: 20 pages and 17 figure
Narcolepsy patients have antibodies that stain distinct cell populations in rat brain and influence sleep patterns.
Narcolepsy is a chronic sleep disorder, likely with an autoimmune component. During 2009 and 2010, a link between A(H1N1)pdm09 Pandemrix vaccination and onset of narcolepsy was suggested in Scandinavia. In this study, we searched for autoantibodies related to narcolepsy using a neuroanatomical array: rat brain sections were processed for immunohistochemistry/double labeling using patient sera/cerebrospinal fluid as primary antibodies. Sera from 89 narcoleptic patients, 52 patients with other sleep-related disorders (OSRDs), and 137 healthy controls were examined. Three distinct patterns of immunoreactivity were of particular interest: pattern A, hypothalamic melanin-concentrating hormone and proopiomelanocortin but not hypocretin/orexin neurons; pattern B, GABAergic cortical interneurons; and pattern C, mainly globus pallidus neurons. Altogether, 24 of 89 (27%) narcoleptics exhibited pattern A or B or C. None of the patterns were exclusive for narcolepsy but were also detected in the OSRD group at significantly lower numbers. Also, some healthy controls exhibited these patterns. The antigen of pattern A autoantibodies was identified as the common C-terminal epitope of neuropeptide glutamic acid-isoleucine/alpha-melanocyte-stimulating hormone (NEI/alphaMSH) peptides. Passive transfer experiments on rat showed significant effects of pattern A human IgGs on rapid eye movement and slow-wave sleep time parameters in the inactive phase and EEG theta-power in the active phase. We suggest that NEI/alphaMSH autoantibodies may interfere with the fine regulation of sleep, contributing to the complex pathogenesis of narcolepsy and OSRDs. Also, patterns B and C are potentially interesting, because recent data suggest a relevance of those brain regions/neuron populations in the regulation of sleep/arousal
Modeling the multi-functionality of African savanna landscapes under global change
Various recent publications have indicated that accelerated global change and its negative impacts on terrestrial ecosystems in Southern Africa urgently demand quantitative assessment and modelling of a range of ecosystem services on which rural communities depend. Information is needed on how these Ecosystem Services (ES) can be enhanced through sustainable land management interventions and enabling policies. Yet, it has also been claimed that, to date, the required system analyses, data and tools to quantify important interactions between biophysical and socio-economic components, their resilience and ability to contribute to livelihood needs do not exist. We disagree, but acknowledge that building an appropriate integrative modelling framework for assessing the multi-functionality of savanna landscapes is challenging. Yet, in this Letter-to-the-Editor, we show that a number of suitable modelling components and required data already exist and can be mobilized and integrated with emerging data and tools to provide answers to problem-driven questions posed by stakeholders on land management and policy issues.German Federal Ministry of Education and Researchhttps://onlinelibrary.wiley.com/journal/1099145xhj2022Zoology and Entomolog
Advances in Molecular Quantum Chemistry Contained in the Q-Chem 4 Program Package
A summary of the technical advances that are incorporated in the fourth major release of the Q-Chem quantum chemistry program is provided, covering approximately the last seven years. These include developments in density functional theory methods and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation theories, methods for electronically excited and open-shell species, tools for treating extended environments, algorithms for walking on potential surfaces, analysis tools, energy and electron transfer modelling, parallel computing capabilities, and graphical user interfaces. In addition, a selection of example case studies that illustrate these capabilities is given. These include extensive benchmarks of the comparative accuracy of modern density functionals for bonded and non-bonded interactions, tests of attenuated second order Møller–Plesset (MP2) methods for intermolecular interactions, a variety of parallel performance benchmarks, and tests of the accuracy of implicit solvation models. Some specific chemical examples include calculations on the strongly correlated Cr2 dimer, exploring zeolite-catalysed ethane dehydrogenation, energy decomposition analysis of a charged ter-molecular complex arising from glycerol photoionisation, and natural transition orbitals for a Frenkel exciton state in a nine-unit model of a self-assembling nanotube
Extreme drought impacts have been underestimated in grasslands and shrublands globally
Climate change is increasing the frequency and severity of short-term (~1 y) drought events-the most common duration of drought-globally. Yet the impact of this intensification of drought on ecosystem functioning remains poorly resolved. This is due in part to the widely disparate approaches ecologists have employed to study drought, variation in the severity and duration of drought studied, and differences among ecosystems in vegetation, edaphic and climatic attributes that can mediate drought impacts. To overcome these problems and better identify the factors that modulate drought responses, we used a coordinated distributed experiment to quantify the impact of short-term drought on grassland and shrubland ecosystems. With a standardized approach, we imposed ~a single year of drought at 100 sites on six continents. Here we show that loss of a foundational ecosystem function-aboveground net primary production (ANPP)-was 60% greater at sites that experienced statistically extreme drought (1-in-100-y event) vs. those sites where drought was nominal (historically more common) in magnitude (35% vs. 21%, respectively). This reduction in a key carbon cycle process with a single year of extreme drought greatly exceeds previously reported losses for grasslands and shrublands. Our global experiment also revealed high variability in drought response but that relative reductions in ANPP were greater in drier ecosystems and those with fewer plant species. Overall, our results demonstrate with unprecedented rigor that the global impacts of projected increases in drought severity have been significantly underestimated and that drier and less diverse sites are likely to be most vulnerable to extreme drought