5 research outputs found

    Bidding strategy for a virtual power plant for trading energy in the wholesale electricity market

    Get PDF
    Virtual power plants (VPPs) are an effective way to increase renewable integration. In this PhD research, the concept design and the detailed costs and benefits of implementing a realistic VPP in Western Australia (WA), comprising 67 dwellings, are developed. The VPP is designed to integrate and coordinate an 810kW rooftop solar PV farm, 350kW/700kWh vanadium redox flow batteries (VRFB), heat pump hot water systems (HWSs), and smart appliances through demand management mechanisms. This research develops a robust bidding strategy for the VPP to participate in both load following ancillary service (LFAS) and energy market in the wholesale electricity market in WA considering the uncertainties associated with PV generation and electricity market prices. Using this strategy, the payback period can be improved by 3 years (to a payback period of 6 years) and the internal rate of return (IRR) by 7.5% (to an IRR of 18%) by participating in both markets. The daily average error of the proposed robust method is 2.7% over one year when compared with a robust mathematical method. The computational effort is 0.66 sec for 365 runs for the proposed method compared to 947.10 sec for the robust mathematical method. To engage customers in the demand management schemes by the VPP owner, the gamified approach is adopted to make the exercise enjoyable while not compromising their comfort levels. Seven gamified applications are examined using a developed methodology based on Kim’s model and Fogg’s model, and the most suitable one is determined. The simulation results show that gamification can improve the payback period by 1 to 2 months for the VPP owner. Furthermore, an efficient and fog-based monitoring and control platform is proposed for the VPP to be flexible, scalable, secure, and cost-effective to realise the full capabilities and profitability of the VPP

    Distribution transformer lifetime analysis in the presence of demand response and rooftop PV integration

    Get PDF
    Many distribution transformers have already exceeded half of their expected service life of 35 years in the infrastructure of Western Power, the electric distribution company supplying southwest of Western Australia, Australia. Therefore, it is anticipated that a high investment on transformer replacement happens in the near future. However, high renewable integration and demand response (DR) are promising resources to defer the investment on infrastructure upgrade and extend the lifetime of transformers. This paper investigates the impact of rooftop photovoltaic (PV) integration and customer engagement through DR on the lifetime of transformers in electric distribution networks. To this aim, first, a time series modelling of load, DR and PV is utilised for each year over a planning period. This load model is applied to a typical distribution transformer for which the hot-spot temperature rise is modelled based on the relevant standard. Using this calculation platform, the loss of life and the actual age of distribution transformer are obtained. Then, various scenarios including different levels of PV penetration and DR contribution are examined, and their impacts on the age of transformer are reported. Finally, the equivalent loss of net present value of distribution transformer is formulated and discussed. This formulation gives major benefits to the distribution network planners for analysing the contribution of PV and DR on lifetime extension of the distribution transformer. In addition, the provided model can be utilised in optimal investment analysis to find the best time for the transformer replacement and the associated cost considering PV penetration and DR. The simulation results show that integration of PV and DR within a feeder can significantly extend the lifetime of transformers

    Grid-Forming Virtual Power Plants: Concepts, Technologies and Advantages

    No full text
    Virtual Power Plants (VPPs) are efficient structures for attracting private investment, increasing the penetration of renewable energy and reducing the cost of electricity for consumers. It is expected that the number of VPPs will increase rapidly as their financial return is attractive to investors. VPPs will provide added value to consumers, to power systems and to electricity markets by contributing to different services such as the energy and load-following services. One of the capabilities that will become critical in the near future, when large power plants are retired, is grid-forming capability. This review paper introduces the concept of grid-forming VPPs along with their corresponding technologies and their advantages for the new generation of power systems with many connected VPPs

    Distribution transformer lifetime analysis in the presence of demand response and rooftop PV integration

    Get PDF
    Many distribution transformers have already exceeded half of their expected service life of 35 years in the infrastructure of Western Power, the electric distribution company supplying southwest of Western Australia, Australia. Therefore, it is anticipated that a high investment on transformer replacement happens in the near future. However, high renewable integration and demand response (DR) are promising resources to defer the investment on infrastructure upgrade and extend the lifetime of transformers. This paper investigates the impact of rooftop photovoltaic (PV) integration and customer engagement through DR on the lifetime of transformers in electric distribution networks. To this aim, first, a time series modelling of load, DR and PV is utilised for each year over a planning period. This load model is applied to a typical distribution transformer for which the hot-spot temperature rise is modelled based on the relevant standard. Using this calculation platform, the loss of life and the actual age of distribution transformer are obtained. Then, various scenarios including different levels of PV penetration and DR contribution are examined, and their impacts on the age of transformer are reported. Finally, the equivalent loss of net present value of distribution transformer is formulated and discussed. This formulation gives major benefits to the distribution network planners for analysing the contribution of PV and DR on lifetime extension of the distribution transformer. In addition, the provided model can be utilised in optimal investment analysis to find the best time for the transformer replacement and the associated cost considering PV penetration and DR. The simulation results show that integration of PV and DR within a feeder can significantly extend the lifetime of transformers

    Advanced Monitoring and Control System for Virtual Power Plants for Enabling Customer Engagement and Market Participation

    No full text
    To integrate large-scale renewable energy into energy systems, an effective participation from private investors and active customer engagement are essential. Virtual power plants (VPPs) are a very promising approach. To realize this engagement, an efficient monitoring and control system needs to be implemented for the VPP to be flexible, scalable, secure, and cost-effective. In this paper, a realistic VPP in Western Australia is studied, comprising 67 dwellings, including a 810 kW rooftop solar photovoltaic (PV) system, a 700 kWh vanadium redox flow battery (VRFB), a heat pump hot water system (HWS), an electric vehicle (EV) charging station, and demand management mechanisms. The practical and detailed concept design of the monitoring and control system for EEBUS-enabled appliances, and also for the PV and VRFB system, with smart inverters, is proposed. In addition, a practical fog-based storage and computing system is developed to enable the VPP owner to manage the PV, VRFB, and EV charging station for maximizing the benefit to the customers and the VPP owner. Further, the proposed cloud-based applications enable customers to participate in gamified demand response programs for increasing the level of their engagement while satisfying their comfort level. All proposed systems and architecture in this paper have the capability of being implemented fully and relevant references for practical devices are given where necessary
    corecore