14 research outputs found
Recommended from our members
Inkjet Printing of Materials with Resistance to Bacterial Attachment
Biofilm formation on the surface of medical devices is a major source of health-care
associated infections. The discovery of new materials that inherently avoid formation of such
biofilms on their surface points the way to the fabrication of biofilm resistant devices, with
the consequent reduction in the incidence rate of device centred infections and therefore a
reduction in suffering and costs for health-care systems. Drop on Demand (DOD) Three
Dimensional (3D) Inkjet Printing presents higher versatility than common techniques for
printing biomaterials. One of the main representations of this enhanced versatility is
polymerisation post-jetting, which provides a great range of printable polymers. The
combination of such materials with inkjet printing could revolutionise the biomedical
industry.
In this paper, the printability of four acrylates with resistance to bacterial attachment
was assessed using the printability indicator or Z parameter. Three of the materials showed a
value of Z within the printability range. The remainder displayed a Z value higher than the
maximum suggested. However, this material was ejected with stability using a complex
waveform designed for low viscosity inks. Drop spacing was optimised for each ink using
PET and glass as substrates. The combination of printability optimisation together with ideal
drop spacing allowed the construction of 3D structures of three of the four inks that were
tested.Mechanical Engineerin
Recommended from our members
The Galaxy platform for accessible, reproducible, and collaborative data analyses: 2024 update
YesGalaxy (https://galaxyproject.org) is deployed globally, predominantly through free-to-use services, supporting user-driven research that broadens in scope each year. Users are attracted to public Galaxy services by platform stability, tool and reference dataset diversity, training, support and integration, which enables complex, reproducible, shareable data analysis. Applying the principles of user experience design (UXD), has driven improvements in accessibility, tool discoverability through Galaxy Labs/subdomains, and a redesigned Galaxy ToolShed. Galaxy tool capabilities are progressing in two strategic directions: integrating general purpose graphical processing units (GPGPU) access for cutting-edge methods, and licensed tool support. Engagement with global research consortia is being increased by developing more workflows in Galaxy and by resourcing the public Galaxy services to run them. The Galaxy Training Network (GTN) portfolio has grown in both size, and accessibility, through learning paths and direct integration with Galaxy tools that feature in training courses. Code development continues in line with the Galaxy Project roadmap, with improvements to job scheduling and the user interface. Environmental impact assessment is also helping engage users and developers, reminding them of their role in sustainability, by displaying estimated CO2 emissions generated by each Galaxy job.NIH [U41 HG006620, U24 HG010263, U24 CA231877, U01 CA253481]; US National Science Foundation [1661497, 1758800, 2216612]; computational resources are provided by the Advanced Cyberinfrastructure Coordination Ecosystem (ACCESS-CI), Texas Advanced Computing Center, and the JetStream2 scientific cloud. Funding for open access charge: NIH. ELIXIR IS and Travel grants; EU Horizon Europe [HORIZON-INFRA-2021-EOSC-01-04, 101057388]; EU Horizon Europe under the Biodiversity, Circular Economy and Environment program (REA.B.3, BGE 101059492); German Federal Ministry of Education and Research, BMBF [031 A538A de.NBI-RBC]; Ministry of Science, Research and the Arts Baden-WĂĽrttemberg (MWK) within the framework of LIBIS/de.NBI Freiburg. Galaxy Australia is supported by the Australian BioCommons which is funded through Australian Government NCRIS investments from Bioplatforms Australia and the Australian Research Data Commons, as well as investment from the Queensland Government RICF program
Recommended from our members
The Galaxy platform for accessible, reproducible, and collaborative data analyses: 2024 update
YesGalaxy (https://galaxyproject.org) is deployed globally, predominantly through free-to-use services, supporting user-driven research that broadens in scope each year. Users are attracted to public Galaxy services by platform stability, tool and reference dataset diversity, training, support and integration, which enables complex, reproducible, shareable data analysis. Applying the principles of user experience design (UXD), has driven improvements in accessibility, tool discoverability through Galaxy Labs/subdomains, and a redesigned Galaxy ToolShed. Galaxy tool capabilities are progressing in two strategic directions: integrating general purpose graphical processing units (GPGPU) access for cutting-edge methods, and licensed tool support. Engagement with global research consortia is being increased by developing more workflows in Galaxy and by resourcing the public Galaxy services to run them. The Galaxy Training Network (GTN) portfolio has grown in both size, and accessibility, through learning paths and direct integration with Galaxy tools that feature in training courses. Code development continues in line with the Galaxy Project roadmap, with improvements to job scheduling and the user interface. Environmental impact assessment is also helping engage users and developers, reminding them of their role in sustainability, by displaying estimated CO2 emissions generated by each Galaxy job.NIH [U41 HG006620, U24 HG010263, U24 CA231877, U01 CA253481]; US National Science Foundation [1661497, 1758800, 2216612]; computational resources are provided by the Advanced Cyberinfrastructure Coordination Ecosystem (ACCESS-CI), Texas Advanced Computing Center, and the JetStream2 scientific cloud. Funding for open access charge: NIH. ELIXIR IS and Travel grants; EU Horizon Europe [HORIZON-INFRA-2021-EOSC-01-04, 101057388]; EU Horizon Europe under the Biodiversity, Circular Economy and Environment program (REA.B.3, BGE 101059492); German Federal Ministry of Education and Research, BMBF [031 A538A de.NBI-RBC]; Ministry of Science, Research and the Arts Baden-WĂĽrttemberg (MWK) within the framework of LIBIS/de.NBI Freiburg. Galaxy Australia is supported by the Australian BioCommons which is funded through Australian Government NCRIS investments from Bioplatforms Australia and the Australian Research Data Commons, as well as investment from the Queensland Government RICF program.Please note, contributors are listed in alphabetical order
Data from: Cascading spatial and trophic impacts of oak decline on the soil food web
1. Tree defoliation and mortality have considerably increased worldwide during the last decades due to global change drivers such as increasing drought or invasive pests and pathogens. However, the effects of this tree decline on soil food webs are poorly understood.
2. In this study we evaluated the impacts of Quercus suber decline on soil food webs of Mediterranean mixed forests invaded by the exotic oomycete pathogen Phytophthora cinnamomi, using soil nematodes as bioindicator taxa. We used a spatially-explicit neighborhood approach to predict the characteristics of the nematode community (diversity, trophic structure, and several indices indicative of soil food web conditions) as a function of the characteristics of the tree and shrub community (species composition, size and health status).
3. Our results indicate that the process of defoliation and mortality of Q. suber caused significant alterations in the nematode trophic structure increasing the abundance of lower trophic levels (bacterivores, fungivores and herbivores) and decreasing the abundance of higher levels (predators and omnivores). Furthermore, Q. suber decline altered the functional composition of soil communities, producing a setback of the ecological succession in the soil food web to an earlier stage (decrease in the maturity index and increase in the plant-parasitic index), simplified soil food webs (decrease in the structure index), and shifts in the predominant decomposition channel (increase in the fungivores/bacterivores ratio).
4. We also detected contrasting characteristics of the nematode community in neighborhoods dominated by coexistent woody species, which suggests potential for long-term indirect effects on soil food webs due to the substitution of Q. suber by non-declining species.
5. Synthesis: Our study provides novel results that show the major impacts that ongoing health deterioration of dominant tree species can have on the structure and composition of soil food webs in forest systems invaded by exotic pathogens, with cascading consequences for soil biogeochemical processes in both the short- and long-term
Design of highly stabilized nanocomposite inks based on biodegradable polymer-matrix and gold nanoparticles for Inkjet Printing
Nowadays there is a worldwide growing interest in the Inkjet Printing technology owing to its potentially high levels of geometrical complexity, personalization and resolution. There is also social concern about usage, disposal and accumulation of plastic materials. In this work, it is shown that sugar-based biodegradable polyurethane polymers exhibit outstanding properties as polymer-matrix for gold nanoparticles composites. These materials could reach exceptional stabilization levels, and demonstrated potential as novel robust inks for Inkjet based Printing. Furthermore, a physical comparison among different polymers is discussed based on stability and printability experiments to search for the best ink candidate. The University of Seville logo was printed by employing those inks, and the presence of gold was confirmed by ToF-SIMS. This approach has the potential to open new routes and applications for fabrication of enhanced biomedical nanometallic-sensors using stabilized AuNP