87 research outputs found

    Defect‐Driven Magnetization Configuration of Isolated Linear Assemblies of Iron Oxide Nanoparticles

    Get PDF
    International audienceThe magnetization state of one-dimensional magnetic nanoparticle chains plays a key role for a wide range of applications ranging from diagnosis and therapy in medicine to actuators, sensors and quantum recording media. The interplay between the exact particle orientation and the magnetic anisotropy is in turn crucial for controlling the overall magnetization state with high precision. Here, we report on a three-dimensional description of the magnetic structure of one-NP-wide chains. In this aim, we combined two complementary experimental techniques, magnetic force microscopy (MFM) and electronic holography (EH) which are sensitive to out-of-plane and in-plane magnetization components, respectively. We extended our approach to micromagnetic simulations which provided results in good agreement with MFM and EH. The findings are at variance with the known results on unidirectional nanoparticle assemblies, and show that magnetization is rarely strictly collinear to the chain axis. The magnetic structure of one-NP-wide chains can be interpreted as head-to-head magnetic domain structures with off-axis magnetization components, which is very sensitive to morphological defects in the chain structure such as minute size variation of NPs, tiny misalignment of NPs and/or crystal orientation with respect to easy magnetization axis

    Nanotrench for nano and microparticle electrical interconnects

    Get PDF
    We present a simple and versatile patterning procedure for the reliable and reproducible fabrication of high aspect ratio (10 4 ) electrical interconnects that have separation distances down to 20 nm and lengths of several hundreds of microns. The process uses standard optical lithography techniques and allows parallel processing of many junctions, making it easily scalable and industrially relevant. We demonstrate the suitability of these nanotrenches as electrical interconnects for addressing micro and nanoparticles by realizing several circuits with integrated species. Furthermore, low impedance metal-metal low contacts are shown to be obtained when trapping a single metal-coated microsphere in the gap, emphasizing the intrinsic good electrical conductivity of the interconnects, even though a wet process is used. Highly resistive magnetite-based nanoparticles networks also demonstrate the advantage of the high aspect ratio of the nanotrenches for providing access to electrical properties of highly resistive materials, with leakage current levels below 1 pA. © 2010 IOP Publishing Ltd

    Engineered inorganic core/shell nanoparticles

    Get PDF
    International audienceIt has been for a long time recognized that nanoparticles are of great scientific interest as they are effectively a bridge between bulk materials and atomic structures. At first, size effects occurring in single elements have been studied. More recently, progress in chemical and physical synthesis routes permitted the preparation of more complex structures. Such structures take advantages of new adjustable parameters including stoichiometry, chemical ordering, shape and segregation opening new fields with tailored materials for biology, mechanics, optics magnetism, chemistry catalysis, solar cells and microelectronics. Among them, core/shell structures are a particular class of nanoparticles made with an inorganic core and one or several inorganic shell layer(s). In earlier work, the shell was merely used as a protective coating for the core. More recently, it has been shown that it is possible to tune the physical properties in a larger range than that of each material taken separately. The goal of the present review is to discuss the basic properties of the different types of core/shell nanoparticles including a large variety of heterostructures. We restrict ourselves on all inorganic (on inorganic/inorganic) core/shell structures. In the light of recent developments, the applications of inorganic core/shell particles are found in many fields including biology, chemistry, physics and engineering. In addition to a representative overview of the properties, general concepts based on solid state physics are considered for material selection and for identifying criteria linking the core/shell structure and its resulting properties. Chemical and physical routes for the synthesis and specific methods for the study of core/shell nanoparticle are briefly discussed

    Properties and suspension stability of dendronized iron oxide nanoparticles for MRI applications

    Get PDF
    Functionalized iron oxide nanoparticles have attracted an increasing interest in the last 10 years as contrast agents for MRI. One challenge is to obtain homogeneous and stable aqueous suspensions of iron oxide nanoparticles without aggregates. Iron oxide nanoparticles with sizes around 10 nm were synthesized by two methods: the particle size distribution in water suspension of iron oxide nanoparticles synthesized by the co-precipitation method was improved by a process involving two steps of ligand exchange and phase transfer and was compared with that of iron oxide nanoparticles synthesized by thermal decomposition and functionalized by the same dendritic molecule. The saturation magnetization of dendronized nanoparticles synthesized by thermal decomposition was lower than that of nanoparticles synthesized by co-precipitation. The r(2) relaxivity values were shown to decrease with the agglomeration state in suspension and high r(2) values and r(2)/r(1) ratios were obtained with nanoparticles synthesized by co-precipitation by comparison with those of commercial products. Dendronized iron oxide nanoparticles thus have potential properties as contrast agent. Copyright (C) 2010 John Wiley & Sons, Ltd

    Towards nanoprinting with metals on graphene

    Get PDF
    Graphene and carbon nanotubes are envisaged as suitable materials for the fabrication of the new generation of nanoelectronics. The controlled patterning of such nanostructures with metal nanoparticles is conditioned by the transfer between a recipient and the surface to pattern. Electromigration under the impact of an applied voltage stands at the base of printing discrete digits at the nanoscale. Here we report the use of carbon nanotubes as nanoreservoirs for iron nanoparticles transfer on few-layer graphene. An initial Joule-induced annealing is required to ensure the control of the mass transfer with the nanotube acting as a `pen' for the writing process. By applying a voltage, the tube filled with metal nanoparticles can deposit metal on the surface of the graphene sheet at precise locations. The reverse transfer of nanoparticles from the graphene surface to the nanotube when changing the voltage polarity opens the way for error corrections

    Fluorescent and magnetic stellate mesoporous silica for bimodal imaging and magnetic hyperthermia

    Get PDF
    There is currently a crucial need of innovative multifunctional nanoparticles combining, in one formulation, imaging and therapy capacities allowing thus an accurate diagnosis and a therapy monitored by imaging. Multimodal imaging will ensure to speed up diagnosis, and to increase its sensitivity, reliability and specificity for a better management of the disease. Combined with a therapeutic action, it will also enable to treat the disease in a specific personalized manner in feedback mode. The mastered design of such bioprobes as well as the demonstration of their efficiency are still challenges to face in nanomedicine. In this work, novel fluorescent and magnetic core–shell nanocomposites have been designed to ensure, in one nanoformulation, bimodal fluorescence and MRI imaging coupled with therapy by magnetic hyperthermia. They consist in the coating of a magnetic iron oxide (IO) core (ca. 18 nm diameter to ensure magnetic hyperthermia) by an original large pore stellate mesoporous silica (STMS) shell to produce uniform and mono-core magnetic core–shell nanocomposites denoted IO@STMS NPs. To confer fluorescence properties, CdSe/ZnS quantum dots (QDs) NPs were grafted inside the large pores of the IO@STMS nanocomposites. To provide biocompatibility and opsonization-resistance, a tightly-bound human serum albumin (HSA) coating is added around the nanocomposite using an original IBAM-based strategy. Cellular toxicity and non-specific cell–nanomaterial interactions allowed to determine a concentration range for safe application of these NPs. Cellular endosomes containing spontaneously-uptaken NPs displayed strong and photostable QD fluorescence signals while magnetic relaxivity measurements confirm their suitability as contrast agent for MRI. HeLa cell-uptaken NPs exposed to a magnetic field of 100 kHz and 357 Gauss (or 28.5 kA m−1) display an outstanding 65% cell death at a very low iron concentration (1.25 μg Fe mL−1), challenging current magnetic hyperthermia nanosystems. Furthermore, at the particularly demanding conditions of clinical use with low frequency and amplitude field (100 kHz, 117 Gauss or 9.3 kA m−1), magnetic hyperthermia combined with the delivery of a chemotherapeutic drug, doxorubicin, allowed 46% cell death, which neither the drug nor the NPs alone yielded, evidencing thus the synergistic effect of this combined treatment.Facultad de Ciencias VeterinariasInstituto de Investigaciones Fisicoquímicas Teóricas y AplicadasInstituto de Física La Plat

    A 3D insight on the catalytic nanostructuration of few-layer graphene

    Get PDF
    The catalytic cutting of few-layer graphene is nowadays a hot topic in materials research due to its potential applications in the catalysis field and the graphene nanoribbons fabrication. We show here a 3D analysis of the nanostructuration of few-layer graphene by iron-based nanoparticles under hydrogen flow. The nanoparticles located at the edges or attached to the steps on the FLG sheets create trenches and tunnels with orientations, lengths and morphologies defined by the crystallography and the topography of the carbon substrate. The cross-sectional analysis of the 3D volumes highlights the role of the active nanoparticle identity on the trench size and shape, with emphasis on the topographical stability of the basal planes within the resulting trenches and channels, no matter the obstacle encountered. The actual study gives a deep insight on the impact of nanoparticles morphology and support topography on the 3D character of nanostructures built up by catalytic cutting

    Tailored biological retention and efficient clearance of pegylated ultra-small MnO nanoparticles as positive MRI contrast agents for molecular imaging

    Get PDF
    A majority of MRI procedures requiring intravascular injections of contrast agents are performed with paramagnetic chelates. Such products induce vascular signal enhancement and they are rapidly excreted by the kidneys. Unfortunately, each chelate is made of only one paramagnetic ion, which, taken individually, has a limited impact on the MRI signal. In fact, the detection of molecular events in the nanomolar range using T-1-weighted MRI sequences requires the design of ultra-small particles containing hundreds of paramagnetic ions per contrast agent unit. Ultra-small nanoparticles of manganese oxide (MnO, 6-8 nm diameter) have been developed and proposed as an efficient and at least 1000 x more sensitive “positive” MRI contrast agent. However no evidence has been found until now that an adequate surface treatment of these particles could maintain their strong blood signal enhancement, while allowing their rapid and efficient excretion by the kidneys or by the hepatobiliairy pathway. Indeed, the sequestration of MnO particles by the reticuloendothelial system followed by strong uptake in the liver and in the spleen could potentially lead to Mn2+-induced toxicity effects. For ultra-small MnO particles to be applied in the clinics, it is necessary to develop coatings that also enable their efficient excretion within hours. This study demonstrates for the first time the possibility to use MnO particles as T-1 vascular contrast agents, while enabling the excretion of > 70% of all the Mn injected doses after 48 h. For this, small, biocompatible and highly hydrophilic pegylated bis-phosphonate dendrons (PDns) were grafted on MnO particles to confer colloidal stability, relaxometric performance, and fast excretion capacity. The chemical and colloidal stability of MnO@PDn particles were confirmed by XPS, FTIR and DLS. The relaxometric performance of MnO@PDns as “positive” MRI contrast agents was assessed (r(1) = 4.4 mM(-1) s(-1), r(2)/r(1) = 8.6; 1.41 T and 37 degrees C). Mice were injected with 1.21 mu g Mn per kg (22 mu mol Mn per kg), and scanned in MRI up to 48 h. The concentration of Mn in key organs was precisely measured by neutron activation analysis and confirmed, with MRI, the possibility to avoid RES nanoparticle sequestration through the use of phosphonate dendrons. Due to the fast kidney and hepatobiliairy clearance of MnO particles conferred by PDns, MnO nanoparticles can now be considered for promising applications in T1-weighted MRI applications requiring less toxic although highly sensitive “positive” molecular contrast agents

    Efficient synthesis of small-sized phosphonated dendrons: potential organic coatings of iron oxide nanoparticles:

    Get PDF
    We report herein the synthesis of biocompatible small-sized phosphonated monomers and dendrons used as functional coatings of metal oxide nanoparticles, more specifically superparamagnetic iron oxides (SPIOs) for magnetic resonance imaging (MRI) and therapy through hyperthermia. The molecules were engineered to modulate their size, their hydrophilic and/or biocompatible character (poly(amido) amine versus oligoethyleneglycol), the number of anchoring phosphonate groups (monophosphonate versus phosphonic tweezers) and the number of peripheral functional groups for further grafting of dyes or specific vectors. Such a library of hydrophilic phosphonic acids opens new possibilities for the investigation of dendronized nanohybrids as theranostics

    Two dimensional dipolar coupling in monolayers of silver and gold nanoparticles on a dielectric substrate

    Get PDF
    The dimensionality of assembled nanoparticles plays an important role in their optical and magnetic properties, via dipolar effects and the interaction with their environment. In this work we develop a methodology for distinguishing between two (2D) and three (3D) dimensional collective interactions on the surface plasmon resonance of assembled metal nanoparticles. Towards that goal, we elaborate different sets of Au and Ag nanoparticles as suspensions, random 3D arrangements and well organized 2D arrays. Then we model their scattering cross-section using effective field methods in dimension n, including interparticle as well as particle-substrate dipolar interactions. For this modelling, two effective field medium approaches are employed, taking into account the filling factors of the assemblies. Our results are important for realizing photonic amplifier devices
    corecore