652 research outputs found

    The Hercules-Aquila Cloud

    Full text link
    We present evidence for a substantial overdensity of stars in the direction of the constellations of Hercules and Aquila. The Cloud is centered at a Galactic longitude of about 40 degrees and extends above and below the Galactic plane by at least 50 degrees. Given its off-centeredness and height, it is unlikely that the Hercules-Aquila Cloud is related to the bulge or thick disk. More likely, this is a new structural component of the Galaxy that passes through the disk. The Cloud stretches about 80 degrees in longitude. Its heliocentric distance lies between 10 and 20 kpc so that the extent of the Cloud in projection is roughly 20 kpc by 15 kpc. It has an absolute magnitude of -13 and its stellar population appears to be comparable to, but somewhat more metal-rich than, M92.Comment: ApJ (Letters), in pres

    Constraints on the mass and abundance of black holes in the Galactic halo: the high mass limit

    Get PDF
    We establish constraints on the mass and abundance of black holes in the Galactic halo by determining their impact on globular clusters which are conventionally considered to be little evolved. Using detailed Monte Carlo simulations and simple analytic estimates, we conclude that, at Galactocentric radius R~8 kpc, black holes with masses M_bh >~(1-3) x 10^6 M_sun can comprise no more than a fraction f_bh ~ 0.025-0.05 of the total halo density. This constraint significantly improves those based on disk heating and dynamical friction arguments as well as current lensing results. At smaller radius, the constraint on f_bh strengthens, while, at larger radius, an increased fraction of black holes is allowed.Comment: 13 pages, 10 figures, revised version, in press, Monthly Notice

    Cosmological Dark Energy: Prospects for a Dynamical Theory

    Get PDF
    We present an approach to the problem of vacuum energy in cosmology, based on dynamical screening of Lambda on the horizon scale. We review first the physical basis of vacuum energy as a phenomenon connected with macroscopic boundary conditions, and the origin of the idea of its screening by particle creation and vacuum polarization effects. We discuss next the relevance of the quantum trace anomaly to this issue. The trace anomaly implies additional terms in the low energy effective theory of gravity, which amounts to a non-trivial modification of the classical Einstein theory, fully consistent with the Equivalence Principle. We show that the new dynamical degrees of freedom the anomaly contains provide a natural mechanism for relaxing Lambda to zero on cosmological scales. We consider possible signatures of the restoration of conformal invariance predicted by the fluctuations of these new scalar degrees of freedom on the spectrum and statistics of the CMB, in light of the latest bounds from WMAP. Finally we assess the prospects for a new cosmological model in which the dark energy adjusts itself dynamically to the cosmological horizon boundary, and therefore remains naturally of order H^2 at all times without fine tuning.Comment: 50 pages, Invited Contribution to New Journal of Physics Focus Issue on Dark Energ

    Structure detection in the D1 CFHTLS deep field using accurate photometric redshifts: a benchmark

    Get PDF
    We investigate structures in the D1 CFHTLS deep field in order to test the method that will be applied to generate homogeneous samples of clusters and groups of galaxies in order to constrain cosmology and detailed physics of groups and clusters. Adaptive kernel technique is applied on galaxy catalogues. This technique needs none of the usual a-priori assumptions (luminosity function, density profile, colour of galaxies) made with other methods. Its main drawback (decrease of efficiency with increasing background) is overcame by the use of narrow slices in photometric redshift space. There are two main concerns in structure detection. One is false detection and the second, the evaluation of the selection function in particular if one wants "complete" samples. We deal here with the first concern using random distributions. For the second, comparison with detailed simulations is foreseen but we use here a pragmatic approach with comparing our results to GalICS simulations to check that our detection number is not totally at odds compared to cosmological simulations. We use XMM-LSS survey and secured VVDS redshifts up to z~1 to check individual detections. We show that our detection method is basically capable to recover (in the regions in common) 100% of the C1 XMM-LSS X-ray detections in the correct redshift range plus several other candidates. Moreover when spectroscopic data are available, we confirm our detections, even those without X-ray data.Comment: 14 pages, 22 additionnal jpeg figures, accepted in A&

    The Chemical Composition and Age of the Metal-Poor Halo Star BD +17^\circ 3248

    Full text link
    We have combined new high-resolution spectra obtained with the Hubble Space Telescope (HST) and ground-based facilities to make a comprehensive new abundance analysis of the metal-poor, halo star BD +17^\circ 3248. We have detected the third r-process peak elements osmium, platinum, and (for the first time in a metal-poor star) gold, elements whose abundances can only be reliably determined using HST. Our observations illustrate a pattern seen in other similar halo stars with the abundances of the heavier neutron-capture elements, including the third r-process peak elements, consistent with a scaled solar system r-process distribution. The abundances of the lighter neutron-capture elements, including germanium and silver, fall below that same scaled solar r-process curve, a result similar to that seen in the ultra-metal-poor star CS 22892--052. A single site with two regimes or sets of conditions, or perhaps two different sites for the lighter and heavier neutron-capture elements, might explain the abundance pattern seen in this star. In addition we have derived a reliable abundance for the radioactive element thorium. We tentatively identify U II at 3859 A in the spectrum of BD +17^\circ 3248, which makes this the second detection of uranium in a very metal-poor halo star. Our combined observations cover the widest range in proton number (from germanium to uranium) thus far of neutron-capture elements in metal-poor Galactic halo stars. Employing the thorium and uranium abundances in comparison with each other and with several stable elements, we determine an average cosmochronological age for BD +17^\circ 3248 of 13.8 +/- 4 Gyr, consistent with that found for other similar metal-poor halo stars.Comment: 58 pages, 4 tables, 11 figures; To appear in ApJ Typo correcte

    Potentially inappropriate medication in older participants of the Berlin Aging Study II (BASE-II) - Sex differences and associations with morbidity and medication use

    Get PDF
    INTRODUCTION: Multimorbidity in advanced age and the need for drug treatment may lead to polypharmacy, while pharmacokinetic and pharmacodynamic changes may increase the risk of adverse drug events (ADEs). OBJECTIVE: The aim of this study was to determine the proportion of subjects using potentially inappropriate medication (PIM) in a cohort of older and predominantly healthy adults in relation to polypharmacy and morbidity. METHODS: Cross-sectional data were available from 1,382 study participants (median age 69 years, IQR 67-71, 51.3% females) of the Berlin Aging Study II (BASE-II). PIM was classified according to the EU(7)-PIM and German PRISCUS (representing a subset of the former) list. Polypharmacy was defined as the concomitant use of at least five drugs. A morbidity index (MI) largely based on the Charlson Index was applied to evaluate the morbidity burden. RESULTS: Overall, 24.1% of the participants were affected by polypharmacy. On average, men used 2 (IQR 1-4) and women 3 drugs (IQR 1-5). According to PRISCUS and EU(7)-PIM, 5.9% and 22.6% of participants received at least one PIM, while use was significantly more prevalent in females (25.5%) compared to males (19.6%) considering EU(7)-PIM (p = 0.01). In addition, morbidity in males receiving PIM according to EU(7)-PIM was higher (median MI 1, IQR 1-3) compared to males without PIM use (median MI 1, IQR 0-2, p<0.001). CONCLUSION: PIM use occurred more frequently in women than in men, while it was associated with higher morbidity in males. As expected, EU(7)-PIM identifies more subjects as PIM users than the PRISCUS list but further studies are needed to investigate the differential impact of both lists on ADEs and outcome. KEY POINTS: We found PIM use to be associated with a higher number of regular medications and with increased morbidity. Additionally, we detected a higher prevalence of PIM use in females compared to males, suggesting that women and people needing intensive drug treatment are patient groups, who are particularly affected by PIM use

    Cats and Dogs, Hair and A Hero: A Quintet of New Milky Way Companions

    Get PDF
    We present five new satellites of the Milky Way discovered in Sloan Digital Sky Survey (SDSS) imaging data, four of which were followed-up with either the Subaru or the Isaac Newton Telescopes. They include four probable new dwarf galaxies -- one each in the constellations of Coma Berenices, Canes Venatici, Leo and Hercules -- together with one unusually extended globular cluster, Segue 1. We provide distances, absolute magnitudes, half-light radii and color-magnitude diagrams for all five satellites. The morphological features of the color-magnitude diagrams are generally well described by the ridge line of the old, metal-poor globular cluster M92. In the last two years, a total of ten new Milky Way satellites with effective surface brightness mu_v >~ 28 mag/sq. arcsec have been discovered in SDSS data. They are less luminous, more irregular and appear to be more metal-poor than the previously-known nine Milky Way dwarf spheroidals. The relationship between these objects and other populations is discussed. We note that there is a paucity of objects with half-light radii between ~40 pc and ~ 100 pc. We conjecture that this may represent the division between star clusters and dwarf galaxies.Comment: 10 pages, 8 figures, submitted to the Astrophysical Journa

    Tracing chemical evolution over the extent of the Milky Way's Disk with APOGEE Red Clump Stars

    Get PDF
    We employ the first two years of data from the near-infrared, high-resolution SDSS-III/APOGEE spectroscopic survey to investigate the distribution of metallicity and alpha-element abundances of stars over a large part of the Milky Way disk. Using a sample of ~10,000 kinematically-unbiased red-clump stars with ~5% distance accuracy as tracers, the [alpha/Fe] vs. [Fe/H] distribution of this sample exhibits a bimodality in [alpha/Fe] at intermediate metallicities, -0.9<[Fe/H]<-0.2, but at higher metallicities ([Fe/H]=+0.2) the two sequences smoothly merge. We investigate the effects of the APOGEE selection function and volume filling fraction and find that these have little qualitative impact on the alpha-element abundance patterns. The described abundance pattern is found throughout the range 5<R<11 kpc and 0<|Z|<2 kpc across the Galaxy. The [alpha/Fe] trend of the high-alpha sequence is surprisingly constant throughout the Galaxy, with little variation from region to region (~10%). Using simple galactic chemical evolution models we derive an average star formation efficiency (SFE) in the high-alpha sequence of ~4.5E-10 1/yr, which is quite close to the nearly-constant value found in molecular-gas-dominated regions of nearby spirals. This result suggests that the early evolution of the Milky Way disk was characterized by stars that shared a similar star formation history and were formed in a well-mixed, turbulent, and molecular-dominated ISM with a gas consumption timescale (1/SFE) of ~2 Gyr. Finally, while the two alpha-element sequences in the inner Galaxy can be explained by a single chemical evolutionary track this cannot hold in the outer Galaxy, requiring instead a mix of two or more populations with distinct enrichment histories.Comment: 18 pages, 17 figures. Accepted for publication in Ap

    Building up the Stellar Halo of the Galaxy

    Get PDF
    We study numerical simulations of satellite galaxy disruption in a potential resembling that of the Milky Way. Our goal is to assess whether a merger origin for the stellar halo would leave observable fossil structure in the phase-space distribution of nearby stars. We show how mixing of disrupted satellites can be quantified using a coarse-grained entropy. Although after 10 Gyr few obvious asymmetries remain in the distribution of particles in configuration space, strong correlations are still present in velocity space. We give a simple analytic description of these effects, based on a linearised treatment in action-angle variables, which shows how the kinematic and density structure of the debris stream changes with time. By applying this description we find that a single satellite of current luminosity 10^8 L_\sun disrupted 10 Gyr ago from an orbit circulating in the inner halo (mean apocentre 12\sim 12 kpc) would contribute about 30\sim 30 kinematically cold streams with internal velocity dispersions below 5 km/s to the local stellar halo. If the whole stellar halo were built by disrupted satellites, it should consist locally of 300 - 500 such streams. Clear detection of all these structures would require a sample of a few thousand stars with 3-D velocities accurate to better than 5 km/s. Even with velocity errors several times worse than this, the expected clumpiness should be quite evident. We apply our formalism to a group of stars detected near the North Galactic Pole, and derive an order of magnitude estimate for the initial properties of the progenitor system.Comment: 28 pages, 10 figures, minor changes, matches the version to appear in MNRAS, Vol. 307, p.495-517 (August 1999

    Nuclear Reaction Rates and Primordial 6^6Li

    Get PDF
    We examine the possibility that Big Bang Nucleosynthesis (BBN) may produce non-trivial amounts of 6^6Li. If a primordial component of this isotope could be observed, it would provide a new fundamental test of Big-Bang cosmology, as well as new constraints on the baryon density of the universe. At present, however, theoretical predictions of the primordial 6^6Li abundance are extremely uncertain due to difficulties in both theoretical estimates and experimental determinations of the deuterium-plus-alpha radiative capture reaction cross-section. We also argue that present observational capabilities do not yet allow the detection of primeval 6^6Li in very metal-poor stars of the galactic halo. However, if the critical cross section is towards the upper end of its plausible range, then improvements in 6^6Li detection capabilities may allow the establishment of 6^6Li as another product of BBN. It is also noted that a primordial 6^6Li detection could help resolve current concerns about the extragalactic D/H determination.Comment: 10 pages, REVTeX, 5 PostScript figures with psfig. Submitted to Physical Review
    corecore