468 research outputs found

    The Albedo, Size, and Density of Binary Kuiper Belt Object (47171) 1999 TC36

    Full text link
    We measured the system-integrated thermal emission of the binary Kuiper Belt Object 1999 TC36 at wavelengths near 24 and 70 microns using the Spitzer space telescope. We fit these data and the visual magnitude using both the Standard Thermal Model and thermophysical models. We find that the effective diameter of the binary is 405 km, with a range of 350 -- 470 km, and the effective visible geometric albedo for the system is 0.079 with a range of 0.055 -- 0.11. The binary orbit, magnitude contrast between the components, and system mass have been determined from HST data (Margot et al., 2004; 2005a; 2005b). Our effective diameter, combined with that system mass, indicate an average density for the objects of 0.5 g/cm3, with a range 0.3 -- 0.8 g/cm3. This density is low compared to that of materials expected to be abundant in solid bodies in the trans-Neptunian region, requiring 50 -- 75% of the interior of 1999 TC36 be taken up by void space. This conclusion is not greatly affected if 1999 TC36 is ``differentiated'' (in the sense of having either a rocky or just a non-porous core). If the primary is itself a binary, the average density of that (hypothetical) triple system would be in the range 0.4 -- 1.1 g/cm3, with a porosity in the range 15 -- 70%.Comment: ApJ, in press (May, 2006

    Debris disks around Sun-like stars

    Full text link
    We have observed nearly 200 FGK stars at 24 and 70 microns with the Spitzer Space Telescope. We identify excess infrared emission, including a number of cases where the observed flux is more than 10 times brighter than the predicted photospheric flux, and interpret these signatures as evidence of debris disks in those systems. We combine this sample of FGK stars with similar published results to produce a sample of more than 350 main sequence AFGKM stars. The incidence of debris disks is 4.2% (+2.0/-1.1) at 24 microns for a sample of 213 Sun-like (FG) stars and 16.4% (+2.8/-2.9) at 70 microns for 225 Sun-like (FG) stars. We find that the excess rates for A, F, G, and K stars are statistically indistinguishable, but with a suggestion of decreasing excess rate toward the later spectral types; this may be an age effect. The lack of strong trend among FGK stars of comparable ages is surprising, given the factor of 50 change in stellar luminosity across this spectral range. We also find that the incidence of debris disks declines very slowly beyond ages of 1 billion years.Comment: ApJ, in pres

    Renal DCE-MRI model selection using Bayesian probability theory

    Get PDF
    The goal of this work was to demonstrate the utility of Bayesian probability theory-based model selection for choosing the optimal mathematical model from among 4 competing models of renal dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data. DCE-MRI data were collected on 21 mice with high (n = 7), low (n = 7), or normal (n = 7) renal blood flow (RBF). Model parameters and posterior probabilities of 4 renal DCE-MRI models were estimated using Bayesian-based methods. Models investigated included (1) an empirical model that contained a monoexponential decay (washout) term and a constant offset, (2) an empirical model with a biexponential decay term (empirical/biexponential model), (3) the Patlak–Rutland model, and (4) the 2-compartment kidney model. Joint Bayesian model selection/parameter estimation demonstrated that the empirical/biexponential model was strongly favored for all 3 cohorts, the modeled DCE signals that characterized each of the 3 cohorts were distinctly different, and individual empirical/biexponential model parameter values clearly distinguished cohorts of low and high RBF from one another. The Bayesian methods can be readily extended to a variety of model analyses, making it a versatile and valuable tool for model selection and parameter estimation.</jats:p

    Simulation of thermal conductivity and heat transport in solids

    Full text link
    Using molecular dynamics (MD) with classical interaction potentials we present calculations of thermal conductivity and heat transport in crystals and glasses. Inducing shock waves and heat pulses into the systems we study the spreading of energy and temperature over the configurations. Phonon decay is investigated by exciting single modes in the structures and monitoring the time evolution of the amplitude using MD in a microcanonical ensemble. As examples, crystalline and amorphous modifications of Selenium and SiO2\rm{SiO_2} are considered.Comment: Revtex, 8 pages, 11 postscript figures, accepted for publication in PR

    Spin-wave Scattering in the Effective Lagrangian Perspective

    Full text link
    Nonrelativistic systems exhibiting collective magnetic behavior are analyzed in the framework of effective Lagrangians. The method, formulating the dynamics in terms of Goldstone bosons, allows to investigate the consequences of spontaneous symmetry breaking from a unified point of view. Low energy theorems concerning spin-wave scattering in ferro- and antiferromagnets are established, emphasizing the simplicity of actual calculations. The present work includes approximate symmetries and discusses the modification of the low energy structure imposed by an external magnetic and an anisotropy field, respectively. Throughout the paper, analogies between condensed matter physics and Lorentz-invariant theories are pointed out, demonstrating the universal feature of the effective Lagrangian technique.Comment: Published versio

    Identification of Nuclear Relaxation Processes in a Gapped Quantum Magnet: Proton NMR in the S=1/2 Heisenberg Ladder Cu2(C5H12N2)2Cl4

    Full text link
    The proton hyperfine shift K and NMR relaxation rate 1/T11/T_1 have been measured as a function of temperature in the S=1/2 Heisenberg antiferromagnetic ladder Cu2(C5H12N2)2Cl4. The presence of a spin gap ΔJJ\Delta \simeq J_\perp-J_\parallel in this strongly coupled ladder (J<JJ_\parallel < J_\perp) is supported by the K and 1/T11/T_1 results. By comparing 1/T11/T_1 at two different proton sites, we infer the evolution of the spectral functions Sz(q,ωn)S_z(q,\omega_n) and S(q,ωn)S_\perp(q,\omega_n). When the gap is significantly reduced by the magnetic field, two different channels of nuclear relaxation, specific to gapped antiferromagnets, are identified and are in agreement with theoretical predictions.Comment: 4 pages, 4 figures, to be published in Phys. Rev. Letter

    Metric tensor as the dynamical variable for variable cell-shape molecular dynamics

    Full text link
    We propose a new variable cell-shape molecular dynamics algorithm where the dynamical variables associated with the cell are the six independent dot products between the vectors defining the cell instead of the nine cartesian components of those vectors. Our choice of the metric tensor as the dynamical variable automatically eliminates the cell orientation from the dynamics. Furthermore, choosing for the cell kinetic energy a simple scalar that is quadratic in the time derivatives of the metric tensor, makes the dynamics invariant with respect to the choice of the simulation cell edges. Choosing the densitary character of that scalar allows us to have a dynamics that obeys the virial theorem. We derive the equations of motion for the two conditions of constant external pressure and constant thermodynamic tension. We also show that using the metric as variable is convenient for structural optimization under those two conditions. We use simulations for Ar with Lennard-Jones parameters and for Si with forces and stresses calculated from first-principles of density functional theory to illustrate the applications of the method.Comment: 10 pages + 6 figures, Latex, to be published in Physical Review

    Towards device-size atomistic models of amorphous silicon

    Full text link
    The atomic structure of amorphous materials is believed to be well described by the continuous random network model. We present an algorithm for the generation of large, high-quality continuous random networks. The algorithm is a variation of the "sillium" approach introduced by Wooten, Winer, and Weaire. By employing local relaxation techniques, local atomic rearrangements can be tried that scale almost independently of system size. This scaling property of the algorithm paves the way for the generation of realistic device-size atomic networks.Comment: 7 pages, 3 figure
    corecore