49 research outputs found

    Gender differences in the Force Concept Inventory for different educational levels in the United Kingdom

    Get PDF
    The Force Concept Inventory (FCI) is widely used to investigate the effect of education level on conceptual understanding of Newtonian mechanics but has only recently been scrutinized for gender effects and retention. This study examines both the gender gap in first year physics undergraduates compared to the gap for nonphysicists and the FCI retention after three months. All participants were either studying or working at the University of Sheffield in the UK and had completed a similar compulsory level of secondary education. As expected the results show that a greater level of education in physics is associated with a larger average FCI score. However, further analysis shows that there exists a gender gap at all levels of education. The size of the effect of gender is quantified using Cohen’s d and ranges from 0.84 to 1.17 which indicates a large effect due to gender for all levels of education. Despite the FCI having been used as a tool to measure learning gains immediately following instruction in Newtonian mechanics there has been little work to investigate whether this increase in FCI score remains after some time has elapsed. Here the increase in FCI scores is found to remain increased after a three month absence of mechanics-related teaching, and that this retention of FCI scores is independent of gender. Despite this, the gender gap still remains large and statistically significant after the three month delay

    Maternal Inflammation at Mid-gestation in Pregnant Rats Impairs Fetal Muscle Growth and Development at Term

    Get PDF
    Intrauterine growth restriction (IUGR) is a leading cause of perinatal morbidity and mortality. Low birth weight resulting from preterm birth and/or IUGR is an underlying factor in 60–80% of perinatal death worldwide, and is particularly common in developing countries (UNICEF, 2008). Furthermore, studies have linked IUGR and the associated fetal malnutrition to increased incidence of metabolic syndrome in adult life (Barker et al., 1993; Godfrey and Barker, 2000). The “thrifty phenotype hypothesis” developed by David Barker (Hales et al., 1991) states that IUGR-associated fetal malnutrition forces the fetus to spare nutrients by altering tissue-specific metabolism in order to survive. In utero, adaptive changes disproportionately impact skeletal muscle development, growth, and metabolism (Yates et al., 2016). Skeletal muscle is responsible for the majority of insulin-stimulated glucose utilization, and adaptive restriction in muscle growth capacity helps to spare glucose in the IUGR fetus but result in lifelong deficits in muscle mass and metabolic homeostasis (Brown and Hay, 2016). Skeletal muscle growth requires proliferation, differentiation, and fusion of myoblast into new muscle fibers early in gestation and fusion with existing fibers in the third trimester of pregnancy (Zhu et al., 2004). This process can be impaired by inflammation from resident macrophages within skeletal muscle. Classically activated M1 macrophages are pro-inflammatory but can polarize to an anti-inflammatory M2 phenotype that inhibits cytokine production and stimulates tissue repair by producing growth factors (Mantovani et al., 2004; Kharraz et al., 2013). The acute effects of inflammatory factors on myoblast function have been investigated in vitro (Frost et al., 1997; Guttridge et al., 2000), and we postulate that inflammatory stress may have similar effects on fetal myoblasts in utero. Impaired myoblast function and the resulting decrease in muscle growth capacity affect long-term metabolic health. Therefore, the objective of this study was to determine the effect of sustained maternal inflammation at mid-gestation on fetal mortality, muscle growth, and metabolic parameters at term

    Maternal Inflammation at Mid-gestation in Pregnant Rats Impairs Fetal Muscle Growth and Development at Term

    Get PDF
    Intrauterine growth restriction (IUGR) is a leading cause of perinatal morbidity and mortality. Low birth weight resulting from preterm birth and/or IUGR is an underlying factor in 60–80% of perinatal death worldwide, and is particularly common in developing countries (UNICEF, 2008). Furthermore, studies have linked IUGR and the associated fetal malnutrition to increased incidence of metabolic syndrome in adult life (Barker et al., 1993; Godfrey and Barker, 2000). The “thrifty phenotype hypothesis” developed by David Barker (Hales et al., 1991) states that IUGR-associated fetal malnutrition forces the fetus to spare nutrients by altering tissue-specific metabolism in order to survive. In utero, adaptive changes disproportionately impact skeletal muscle development, growth, and metabolism (Yates et al., 2016). Skeletal muscle is responsible for the majority of insulin-stimulated glucose utilization, and adaptive restriction in muscle growth capacity helps to spare glucose in the IUGR fetus but result in lifelong deficits in muscle mass and metabolic homeostasis (Brown and Hay, 2016). Skeletal muscle growth requires proliferation, differentiation, and fusion of myoblast into new muscle fibers early in gestation and fusion with existing fibers in the third trimester of pregnancy (Zhu et al., 2004). This process can be impaired by inflammation from resident macrophages within skeletal muscle. Classically activated M1 macrophages are pro-inflammatory but can polarize to an anti-inflammatory M2 phenotype that inhibits cytokine production and stimulates tissue repair by producing growth factors (Mantovani et al., 2004; Kharraz et al., 2013). The acute effects of inflammatory factors on myoblast function have been investigated in vitro (Frost et al., 1997; Guttridge et al., 2000), and we postulate that inflammatory stress may have similar effects on fetal myoblasts in utero. Impaired myoblast function and the resulting decrease in muscle growth capacity affect long-term metabolic health. Therefore, the objective of this study was to determine the effect of sustained maternal inflammation at mid-gestation on fetal mortality, muscle growth, and metabolic parameters at term
    corecore