20 research outputs found

    Role of social network services (SNS) sales promotions in generating brand loyalty for chain steakhouses

    Get PDF
    This research aimed to explore the impact of social network services (SNS) sales promotions on the brand loyalty generation process by considering the role of brand attitude, awareness, service quality, experience, trust, and attachment in the chain steakhouse industry. A field survey was conducted to collect data in a metropolitan city of South Korea. According to our structural equation modeling results, SNS sales promotions significantly increased loyalty and its antecedents, and brand attachment had the greatest influence on brand loyalty. The mediating impact of study variables was also identified. The proposed model had a satisfactory level of prediction power for loyalty. Overall, our findings provided important insights into how steakhouse practitioners can deal with SNS as essential promotional tools and provided valuable insights into why using SNS sales promotions is critical in the fast-changing chain restaurant industry

    Detection of an intermediate during the unfolding process of the dimeric ketosteroid isomerase

    Get PDF
    AbstractFailure to detect the intermediate in spite of its existence often leads to the conclusion that two-state transition in the unfolding process of the protein can be justified. In contrast to the previous equilibrium unfolding experiment fitted to a two-state model by circular dichroism and fluorescence spectroscopies, an equilibrium unfolding intermediate of a dimeric ketosteroid isomerase (KSI) could be detected by small angle X-ray scattering (SAXS) and analytical ultracentrifugation. The sizes of KSI were determined to be 18.7Å in 0M urea, 17.3Å in 5.2M urea, and 25.1Å in 7M urea by SAXS. The size of KSI in 5.2M urea was significantly decreased compared with those in 0M and 7M urea, suggesting the existence of a compact intermediate. Sedimentation velocity as obtained by ultracentrifugation confirmed that KSI in 5.2M urea is distinctly different from native and fully-unfolded forms. The sizes measured by pulse field gradient nuclear magnetic resonance (NMR) spectroscopy were consistent with those obtained by SAXS. Discrepancy of equilibrium unfolding studies between size measurement methods and optical spectroscopies might be due to the failure in detecting the intermediate by optical spectroscopic methods. Further characterization of the intermediate using 1H NMR spectroscopy and Kratky plot supported the existence of a partially-folded form of KSI which is distinct from those of native and fully-unfolded KSIs. Taken together, our results suggest that the formation of a compact intermediate should precede the association of monomers prior to the dimerization process during the folding of KSI

    The conserved cis-Pro39 residue plays a crucial role in the proper positioning of the catalytic base Asp38 in ketosteroid isomerase from Comamonas testosteroni.

    No full text
    KSI (ketosteroid isomerase) from Comamonas testosteroni is a homodimeric enzyme that catalyses the allylic isomerization of Delta5-3-ketosteroids to their conjugated Delta4-isomers at a reaction rate equivalent to the diffusion-controlled limit. Based on the structural analysis of KSI at a high resolution, the conserved cis-Pro39 residue was proposed to be involved in the proper positioning of Asp38, a critical catalytic residue, since the residue was found not only to be structurally associated with Asp38, but also to confer a structural rigidity on the local active-site geometry consisting of Asp38, Pro39, Val40, Gly41 and Ser42 at the flexible loop between b-strands B1 and B2. In order to investigate the structural role of the conserved cis-Pro39 residue near the active site of KSI, Pro39 was replaced with alanine or glycine. The free energy of activation for the P39A and P39G mutants increased by 10.5 and 16.7 kJ/mol (2.5 and 4.0 kcal/mol) respectively, while DG(U)H2O (the free-energy change for unfolding in the absence of urea at 25.00+/-0.02 degrees C) decreased by 31.0 and 35.6 kJ/mol (7.4 and 8.5 kcal/mol) respectively, compared with the wild-type enzyme. The crystal structure of the P39A mutant in complex with d-equilenin [d-1,3,5(10),6,8-estrapentaen-3-ol-17-one], a reaction intermediate analogue, determined at 2.3 A (0.23 nm) resolution revealed that the P39A mutation significantly disrupted the proper orientations of both d-equilenin and Asp38, as well as the local active-site geometry near Asp38, which resulted in substantial decreases in the activity and stability of KSI. Upon binding 1-anilinonaphthalene-8-sulphonic acid, the fluorescence intensities of the P39A and P39G mutants were increased drastically, with maximum wavelengths blue-shifted upon binding, indicating that the mutations might alter the hydrophobic active site of KSI. Taken together, our results demonstrate that the conserved cis-Pro39 residue plays a crucial role in the proper positioning of the critical catalytic base Asp38 and in the structural integrity of the active site in KSI

    Rescue of deleterious mutations by the compensatory Y30F mutation in ketosteroid isomerase

    No full text
    Proteins have evolved to compensate for detrimental mutations. However, compensatory mechanisms for protein defects are not well understood. Using ketosteroid isomerase (KSI), we investigated how second-site mutations could recover defective mutant function and stability. Previous results revealed that the Y30F mutation rescued the Y14F, Y55F and Y14F/Y55F mutants by increasing the catalytic activity by 23-, 3- and 1.3-fold, respectively, and the Y55F mutant by increasing the stability by 3.3 kcal/mol. To better understand these observations, we systematically investigated detailed structural and thermodynamic effects of the Y30F mutation on these mutants. Crystal structures of the Y14F/Y30F and Y14F/Y55F mutants were solved at 2.0 and 1.8 previoulsy solved structures of wild-type and other mutant KSIs. Structural analyses revealed that the Y30F mutation partially restored the active-site cleft of these mutant KSIs. The Y30F mutation also increased Y14F and Y14F/Y55F mutant stability by 3.2 and 4.3 kcal/mol, respectively, and the melting temperatures of the Y14F, Y55F and Y14F/Y55F mutants by 6.4A degrees C, 5.1A degrees C and 10.0A degrees C, respectively. Compensatory effects of the Y30F mutation on stability might be due to improved hydrophobic interactions because removal of a hydroxyl group from Tyr30 induced local compaction by neighboring residue movement and enhanced interactions with surrounding hydrophobic residues in the active site. Taken together, our results suggest that perturbed active-site geometry recovery and favorable hydrophobic interactions mediate the role of Y30F as a secondsite suppressor.X1177sciescopuskc

    Serum YKL-40 levels correlate with infarct volume, stroke severity, and functional outcome in acute ischemic stroke patients.

    Get PDF
    YKL-40 is associated with various neurological disorders. However, circulatory YKL-40 levels early after onset of acute ischemic stroke (AIS) have not been systematically assessed. We aimed to identify the temporal changes and clinical usefulness of measuring serum YKL-40 immediately following AIS.Serum YKL-40 and C-reactive protein (CRP) levels were monitored over time in AIS patients (n = 105) and compared with those of stroke-free controls (n = 34). Infarct volume and stroke severity (National Institutes of Health Stroke Scale; NIHSS) were measured within 48 hours of symptom onset, and functional outcome (modified Rankin Scale; mRS) was measured 3 months after AIS.Within 12 hours of symptom onset, levels of YKL-40 (251 vs. 41 ng/mL) and CRP (1.50 vs. 0.96 µg/mL) were elevated in AIS patients compared to controls. The power of YKL-40 for discriminating AIS patients from controls was superior to that of CRP (area under the curve 0.84 vs. 0.64) and YKL-40 (r = 0.26, P<0.001) but not CRP levels were correlated with mRS. On day 2 of admission (D2), YKL-40 levels correlated with infarct volume and NIHSS. High YKL-40 levels predicted poor functional outcome (odds ratio 5.73, P = 0.03). YKL-40 levels peaked on D2 and declined on D3, whereas CRP levels were highest on D3.Our results demonstrate serial changes in serum YKL-40 levels immediately following AIS and provide the first evidence that it is a valid indicator of AIS extent and an early predictor of functional outcome

    Levels of serum YKL-40 (A) and CRP (B) in acute ischemic stroke patients and controls.

    No full text
    <p>Each box indicates the median. Horizontal lines indicate the interquartile ranges. (<b>C</b>) Diagnostic accuracies of serum YKL-40 and CRP for discriminating acute ischemic stroke patients (n = 100; for statistical assessment of the differences between D1 and D2, 5 of 105 patients were excluded because they [n = 5] dropped out of the D2 test) from controls (n = 34) using receiver operating characteristic (ROC) curves. Numbers in square brackets indicate diagnostic accuracies (area under the ROC curves). D1, within 12 hours of symptom onset; D2, 18–24 hours from baseline (D1); CRP, C-reactive protein. *<i>P</i><0.05. <sup>a</sup><i>P</i><0.05, vs. YKL-40 on D2. <sup>b</sup><i>P</i><0.05, vs. CRP on D1. <sup>c</sup><i>P</i><0.05, vs. CRP on D2. <sup>d</sup><i>P</i><0.05, vs. YKL-40 on D1.</p
    corecore