9 research outputs found

    Chemistry by Mobile Phone (or how to justify more time at the bar)

    No full text
    By combining automatic environment monitoring with Java smartphones a system has been produced for the real-time monitoring of experiments whilst away from the lab. Changes in the laboratory environment are encapsulated as simple XML messages, which are published using an MQTT compliant broker. Clients subscribe to the MQTT stream, and produce a user display. An MQTT client written for the Java MIDP platform, can be run on a smartphone with a GPRS Internet connection, freeing us from the constraints of the lab. We present an overview of the technologies used, and how these are helping chemists make the best use of their time

    The Combechem MQTT LEGO microscope: a grid enabled scientific apparatus demonstrator

    No full text
    Grid computing impacts directly on the experimental scientific laboratory in the areas of monitoring and remote control of experiments, and the storage, processing and dissemination of the resulting data. We highlight some of the issues in extending the use of an MQ Telemetry Transport (MQTT) broker from facilitating the remote monitoring of an experiment and its environment to the remote control of an apparatus. To demonstrate these techniques, an Intel-Play QX3 microscope has been "grid-enabled" using a combination of software to control the microscope imaging, and sample handling hardware built from LEGO Mindstorms. The whole system is controlled remotely by passing messages using an IBM WebSphere Message Broker. <br/

    Novel sensor technology integration for outcome-based risk analysis in diabetes

    Get PDF
    Novel sensor-based continuous biomedical monitoring technologies have a major role in chronic disease management for early detection and prevention of known adverse trends. In the future, a diversity of physiological, biochemical and mechanical sensing principles will be available through sensor device 'ecosystems'. In anticipation of these sensor-based ecosystems, we have developed Healthcare@Home (HH) - a research-phase generic intervention-outcome monitoring framework. HH incorporates a closed-loop intervention effect analysis engine to evaluate the relevance of measured (sensor) input variables to system-defined outcomes. HH offers real-world sensor type validation by evaluating the degree to which sensor-derived variables are relevant to the predicted outcome. This 'index of relevance' is essential where clinical decision support applications depend on sensor inputs. HH can help determine system-integrated cost-utility ratios of bespoke sensor families within defined applications - taking into account critical factors like device robustness / reliability / reproducibility, mobility / interoperability, authentication / security and scalability / usability. Through examples of hardware / software technologies incorporated in the HH end-to-end monitoring system, this paper discusses aspects of novel sensor technology integration for outcome-based risk analysis in diabetes

    Silent bowel perforation with per anal protrusion of ventriculoperitoneal shunt

    No full text
    Ventriculoperitoneal (VP) shunt used in the treatment for hydrocephalus is associated with several complications. Visceral/bowel perforation is an unusual but serious complication of VP shunt. A silent protrusion of distal end of VP shunt per anus is reported in an 8-month-old male child. Patient underwent right VP shunt at the age of 6 months for congenital hydrocephalous. Patient was afebrile and had no signs of peritonitis or meningitis. Exploratory laparotomy was done where shunt was found to penetrate antimesenteric border of sigmoid colon. Shunt was removed and patient is doing well at 6 months follow-up without revision of VP shunt. Etiopathogenesis and management issues are discussed with relevant review of literature

    Axonic Au Tips Induced Enhancement in Raman Spectra and Biomolecular Sensing

    No full text
    International audienceAxonic Au stars with sharp crystalline tips were synthesized via reduction of HAuCl4 capped with cetyl trimethylammonium bromide (CTAB). A seed-mediated method was adopted in which Au seeds were used in the growth solution containing Au+ ions, for initiating the nucleation with CTAB and with ascorbic acid acting as a mild reducing agent. Transmission Electron Microscopy image clearly reveals the synthesis of gold stars. The gold star dispersions display a well-defined optical response as observed by the presence of a sharp surface plasmon resonance centered at 525 nm. The Au stars functionalized with 11-mercaptoundecanoic acid and immobilized with urease showed improved urea-sensing behavior in comparison to pure gold disk in attenuated total reflection surface plasmon resonance (ATR SPR) mode. Surface-enhanced Raman spectroscopy performed using the functionalized Au stars showed a significant enhancement in Raman signals for a wider range of urea concentration (2–20 mg/ml)

    Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    No full text
    BackgroundRegular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations.MethodsThe Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model—a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates—with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality—which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds.FindingsThe leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2–100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1–290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1–211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4–48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3–37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7–9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles.InterpretationLong-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere
    corecore