830 research outputs found

    Impaired glucose metabolism in subjects with the Williams-Beuren syndrome. A five-year follow-up cohort study

    Get PDF
    Objective. The Williams-Beuren syndrome (WS) is associated with impaired glucose metabolism (IGM) early in adulthood. However, the pathophysiology of IGM remains poorly defined, due to the lack longitudinal studies investigating the contribution of β-cell dysfunction and impaired insulin sensitivity. This study aimed at assessing incidence of IGM and the underlying mechanisms in WS adults. Methods. This observational, longitudinal (5-year), cohort study enrolled thirty-one consecutive WS subjects attending a tertiary referral center. An oral glucose tolerance test (OGTT) was performed yearly and used to classify patients as normal or IGM, including impaired fasting glucose (IFG) and/or impaired glucose tolerance (IGT) and diabetes mellitus (DM), and to calculate surrogate measures of insulin secretion and/or sensitivity. Results. IGM patients were 18 (58.1%, three DM) at baseline and 19 (61.3%, five DM) at end-of-follow-up. However, 13 individuals changed category of glucose homeostasis in both directions during follow-up (8 progressors, 5 regressors) and 18 did not (8 non-progressors, 10 non-regressors). New cases of IGM and DM were 11.1 and 2.53 per 100 persons-year, respectively, and were treated non-pharmacologically. In the whole cohort and, to a higher extent, in progressors, indices of early-phase insulin secretion and insulin sensitivity decreased significantly from baseline to end-of-follow-up, with concurrent reduction of the oral disposition index and insulin secretion-sensitivity index-2 (ISSI-2), compensating insulin secretion for the level of insulin resistance. No baseline measure independently predicted progression, which correlated with change from baseline in ISSI-2. Compared with patients with normal glucose homeostasis, IGT subjects had impaired insulin sensitivity, whereas insulin secretion was reduced only in those with IFG+IGT or DM. Conclusions. IGM incidence is high in young adults with WS, suggesting the need of early screening and timed intervention. As in classical type 2 diabetes, impaired insulin sensitivity and β-cell dysfunction contribute, in this sequence, to progression to IGM and DM

    Prenatal manifestation and management of a mother and child affected by spondyloperipheral dysplasia with a C-propeptide mutation in COL2A1: case report

    Get PDF
    It is not unusual for patients with "rare" conditions, such as skeletal dysplasias, to remain undiagnosed until adulthood. In such cases, a pregnancy may unexpectedly reveal hidden problems and special needs. A 28 year old primigravida was referred to us at 17 weeks for counselling with an undiagnosed skeletal dysplasia with specific skeletal anomalies suggesting the collagen 2 disorder, spondyloperipheral dysplasia (SPD; MIM 156550)

    Assessment of copy number variations in 120 patients with Poland syndrome

    Get PDF
    Poland Syndrome (PS) is a rare congenital disorder presenting with agenesis/hypoplasia of the pectoralis major muscle variably associated with thoracic and/or upper limb anomalies. Most cases are sporadic, but familial recurrence, with different inheritance patterns, has been observed. The genetic etiology of PS remains unknown. Karyotyping and array-comparative genomic hybridization (CGH) analyses can identify genomic imbalances that can clarify the genetic etiology of congenital and neurodevelopmental disorders. We previously reported a chromosome 11 deletion in twin girls with pectoralis muscle hypoplasia and skeletal anomalies, and a chromosome six deletion in a patient presenting a complex phenotype that included pectoralis muscle hypoplasia. However, the contribution of genomic imbalances to PS remains largely unknown

    Identification of bi-allelic LFNG variants in three patients and further clinical and molecular refinement of spondylocostal dysostosis 3

    Get PDF
    : Spondylocostal dysostosis (SCD), a condition characterized by multiple segmentation defects of the vertebrae and rib malformations, is caused by bi-allelic variants in one of the genes involved in the Notch signaling pathway that tunes the "segmentation clock" of somitogenesis: DLL3, HES7, LFNG, MESP2, RIPPLY2, and TBX6. To date, seven individuals with LFNG variants have been reported in the literature. In this study we describe two newborns and one fetus with SCD, who were found by trio-based exome sequencing (trio-ES) to carry homozygous (c.822-5C>T) or compound heterozygous (c.[863dup];[1063G>A]) and (c.[521G>T];[890T>G]) variants in LFNG. Notably, the c.822-5C>T change, affecting the polypyrimidine tract of intron 5, is the first non-coding variant reported in LFNG. This study further refines the clinical and molecular features of spondylocostal dysostosis 3 and adds to the numerous investigations supporting the usefulness of trio-ES approach in prenatal and neonatal settings

    Exon-trapping assay improves clinical interpretation of COL11A1 and COL11A2 intronic variants in stickler syndrome type 2 and otospondylomegaepiphyseal dysplasia

    Get PDF
    Stickler syndrome (SS) is a hereditary connective tissue disorder affecting bones, eyes, and hearing. Type 2 SS and the SS variant otospondylomegaepiphyseal dysplasia (OSMED) are caused by deleterious variants in COL11A1 and COL11A2, respectively. In both genes, available database information indicates a high rate of potentially deleterious intronic variants, but published evidence of their biological effect is usually insufficient for a definite clinical interpretation. We report our previously unpublished intronic variants in COL11A1 (c.2241 + 5G>T, c.2809 − 2A>G, c.3168 + 5G>C) and COL11A2 (c.4392 + 1G>A) identified in type 2 SS/OSMED individuals. The pathogenic effect of these variants was first predicted in silico and then investigated by an exon-trapping assay. We demonstrated that all variants can induce exon in-frame deletions, which lead to the synthesis of shorter collagen XI α1 or 2 chains. Lacking residues are located in the α-triple helical region, which has a crucial role in regulating collagen fibrillogenesis. In conclusion, this study suggests that these alternative COL11A1 and COL11A2 transcripts might result in aberrant triple helix collagen. Our approach may help to improve the diagnostic molecular pathway of COL11-related disorder

    West Nile virus transmission. results from the integrated surveillance system in Italy, 2008 to 2015

    Get PDF
    IIn Italy a national Plan for the surveillance of imported and autochthonous human vector-borne diseases (chikungunya, dengue, Zika virus disease and West Nile virus (WNV) disease) that integrates human and veterinary (animals and vectors) surveillance, is issued and revised annually according with the observed epidemiological changes. Here we describe results of the WNV integrated veterinary and human surveillance systems in Italy from 2008 to 2015. A real time data exchange protocol is in place between the surveillance systems to rapidly identify occurrence of human and animal cases and to define and update the map of affected areas i.e. provinces during the vector activity period from June to October. WNV continues to cause severe illnesses in Italy during every transmission season, albeit cases are sporadic and the epidemiology varies by virus lineage and geographic area. The integration of surveillance activities and a multidisciplinary approach made it possible and have been fundamental in supporting implementation of and/or strengthening preventive measures aimed at reducing the risk of transmission of WNV trough blood, tissues and organ donation and to implementing further measures for vector control

    Melorheostosis and Osteopoikilosis Clinical and Molecular Description of an Italian Case Series

    Get PDF
    Melorheostosis (MEL) is an uncommon, sclerosing disease, characterised by hyperostosis of long bones, resembling the flowing of candle wax. The disease is sporadic and the pathogenesis is still poorly understood. Occasionally, the same family can include individuals with MEL and Osteopoikilosis (OPK), a disease characterised by multiple round foci of increased bone density. LEMD3 gene mutations are related to OPK and Buschke–Ollendorff Syndrome, a genetic condition in which an association between MEL, OPK and skin lesions is observed. In rare cases, LEMD3 mutations and recently mosaic MAP2K1 gene mutations have been correlated to MEL suggesting that somatic mosaicism could be causative of the disease. In this study, we described the clinical, radiological and molecular findings of 19 individuals with MEL and 8 with OPK and compared the results to the medical literature. The molecular analyses of this case series corroborate the available data in the medical literature, indicating that LEMD3 germline mutations are not a major cause of isolated MEL and reporting five further cases of OPK caused by LEMD3 germline mutations

    Rubinstein-Taybi Syndrome: spectrum of CREBBP mutations in Italian patients

    Get PDF
    BACKGROUND: Rubinstein-Taybi Syndrome (RSTS, MIM 180849) is a rare congenital disorder characterized by mental and growth retardation, broad and duplicated distal phalanges of thumbs and halluces, facial dysmorphisms and increased risk of tumors. RSTS is caused by chromosomal rearrangements and point mutations in one copy of the CREB-binding protein gene (CREBBP or CBP) in 16p13.3. To date mutations in CREBBP have been reported in 56.6% of RSTS patients and an average figure of 10% has ascribed to deletions. METHODS: Our study is based on the mutation analysis of CREBBP in 31 Italian RSTS patients using segregation analysis of intragenic microsatellites, BAC FISH and direct sequencing of PCR and RT-PCR fragments. RESULTS: We identified a total of five deletions, two of the entire gene and three, all in a mosaic condition, involving either the 5' or the 3' region. By direct sequencing a total of 14 de novo mutations were identified: 10 truncating (5 frameshift and 5 nonsense), one splice site, and three novel missense mutations. Two of the latter affect the HAT domain, while one maps within the conserved nuclear receptor binding of (aa 1–170) and will probably destroy a Nuclear Localization Signal. Identification of the p.Asn1978Ser in the healthy mother of a patient also carrying a de novo frameshift mutation, questions the pathogenetic significance of the missense change reported as recurrent mutation. Thirteen additional polymorphisms, three as of yet unreported, were also detected. CONCLUSION: A high detection rate (61.3%) of mutations is confirmed by this Italian study which also attests one of the highest microdeletion rate (16%) documented so far

    Childhood-onset dystonia-causing KMT2B variants result in a distinctive genomic hypermethylation profile

    Get PDF
    Background: Dystonia is a clinically and genetically heterogeneous movement disorder characterized by sustained or intermittent muscle contractions causing abnormal, often repetitive, movements and/or postures. Heterozygous variants in lysine methyltransferase 2B (KMT2B), encoding a histone H3 methyltransferase, have been associated with a childhood-onset, progressive and complex form of dystonia (dystonia 28, DYT28). Since 2016, more than one hundred rare KMT2B variants have been reported, including frameshift, nonsense, splice site, missense and other in-frame changes, many having an uncertain clinical impact. Results: We characterize the genome-wide peripheral blood DNA methylation profiles of a cohort of 18 patients with pathogenic and unclassified KMT2B variants. We resolve the “episignature” associated with KMT2B haploinsufficiency, proving that this approach is robust in diagnosing clinically unsolved cases, properly classifying them with respect to other partially overlapping dystonic phenotypes, other rare neurodevelopmental disorders and healthy controls. Notably, defective KMT2B function in DYT28 causes a non-random DNA hypermethylation across the genome, selectively involving promoters and other regulatory regions positively controlling gene expression. Conclusions: We demonstrate a distinctive DNA hypermethylation pattern associated with DYT28, provide an epigenetic signature for this disorder enabling accurate diagnosis and reclassification of ambiguous genetic findings and suggest potential therapeutic approaches
    corecore