4,468 research outputs found
How unprovable is Rabin's decidability theorem?
We study the strength of set-theoretic axioms needed to prove Rabin's theorem
on the decidability of the MSO theory of the infinite binary tree. We first
show that the complementation theorem for tree automata, which forms the
technical core of typical proofs of Rabin's theorem, is equivalent over the
moderately strong second-order arithmetic theory to a
determinacy principle implied by the positional determinacy of all parity games
and implying the determinacy of all Gale-Stewart games given by boolean
combinations of sets. It follows that complementation for
tree automata is provable from - but not -comprehension.
We then use results due to MedSalem-Tanaka, M\"ollerfeld and
Heinatsch-M\"ollerfeld to prove that over -comprehension, the
complementation theorem for tree automata, decidability of the MSO theory of
the infinite binary tree, positional determinacy of parity games and
determinacy of Gale-Stewart games are all
equivalent. Moreover, these statements are equivalent to the
-reflection principle for -comprehension. It follows in
particular that Rabin's decidability theorem is not provable in
-comprehension.Comment: 21 page
Sampling Distributions of Random Electromagnetic Fields in Mesoscopic or Dynamical Systems
We derive the sampling probability density function (pdf) of an ideal
localized random electromagnetic field, its amplitude and intensity in an
electromagnetic environment that is quasi-statically time-varying statistically
homogeneous or static statistically inhomogeneous. The results allow for the
estimation of field statistics and confidence intervals when a single spatial
or temporal stochastic process produces randomization of the field. Results for
both coherent and incoherent detection techniques are derived, for Cartesian,
planar and full-vectorial fields. We show that the functional form of the
sampling pdf depends on whether the random variable is dimensioned (e.g., the
sampled electric field proper) or is expressed in dimensionless standardized or
normalized form (e.g., the sampled electric field divided by its sampled
standard deviation). For dimensioned quantities, the electric field, its
amplitude and intensity exhibit different types of
Bessel sampling pdfs, which differ significantly from the asymptotic
Gauss normal and ensemble pdfs when is relatively
small. By contrast, for the corresponding standardized quantities, Student ,
Fisher-Snedecor and root- sampling pdfs are obtained that exhibit
heavier tails than comparable Bessel pdfs. Statistical uncertainties
obtained from classical small-sample theory for dimensionless quantities are
shown to be overestimated compared to dimensioned quantities. Differences in
the sampling pdfs arising from de-normalization versus de-standardization are
obtained.Comment: 12 pages, 15 figures, accepted for publication in Phys. Rev. E, minor
typos correcte
A new class of semiclassical wave function uniformizations
We present a new semiclassical technique which relies on replacing
complicated classical manifold structure with simpler manifolds, which are then
evaluated by the usual semiclassical rules. Under circumstances where the
original manifold structure gives poor or useless results semiclassically the
replacement manifolds can yield remarkable accuracy. We give several working
examples to illustrate the theory presented here.Comment: 12 pages (incl. 12 figures
New Complexity Results and Algorithms for the Minimum Tollbooth Problem
The inefficiency of the Wardrop equilibrium of nonatomic routing games can be
eliminated by placing tolls on the edges of a network so that the socially
optimal flow is induced as an equilibrium flow. A solution where the minimum
number of edges are tolled may be preferable over others due to its ease of
implementation in real networks. In this paper we consider the minimum
tollbooth (MINTB) problem, which seeks social optimum inducing tolls with
minimum support. We prove for single commodity networks with linear latencies
that the problem is NP-hard to approximate within a factor of through
a reduction from the minimum vertex cover problem. Insights from network design
motivate us to formulate a new variation of the problem where, in addition to
placing tolls, it is allowed to remove unused edges by the social optimum. We
prove that this new problem remains NP-hard even for single commodity networks
with linear latencies, using a reduction from the partition problem. On the
positive side, we give the first exact polynomial solution to the MINTB problem
in an important class of graphs---series-parallel graphs. Our algorithm solves
MINTB by first tabulating the candidate solutions for subgraphs of the
series-parallel network and then combining them optimally
Atom cooling and trapping by disorder
We demonstrate the possibility of three-dimensional cooling of neutral atoms
by illuminating them with two counterpropagating laser beams of mutually
orthogonal linear polarization, where one of the lasers is a speckle field,
i.e. a highly disordered but stationary coherent light field. This
configuration gives rise to atom cooling in the transverse plane via a Sisyphus
cooling mechanism similar to the one known in standard two-dimensional optical
lattices formed by several plane laser waves. However, striking differences
occur in the spatial diffusion coefficients as well as in local properties of
the trapped atoms.Comment: 11 figures (postscript
Whirlpool: Improving Dynamic Cache Management with Static Data Classification
Cache hierarchies are increasingly non-uniform and difficult to manage. Several techniques, such as scratchpads or reuse hints, use static information about how programs access data to manage the memory hierarchy. Static techniques are effective on regular programs, but because they set fixed policies, they are vulnerable to changes in program behavior or available cache space. Instead, most systems rely on dynamic caching policies that adapt to observed program behavior. Unfortunately, dynamic policies spend significant resources trying to learn how programs use memory, and yet they often perform worse than a static policy. We present Whirlpool, a novel approach that combines static information with dynamic policies to reap the benefits of each. Whirlpool statically classifies data into pools based on how the program uses memory. Whirlpool then uses dynamic policies to tune the cache to each pool. Hence, rather than setting policies statically, Whirlpool uses static analysis to guide dynamic policies. We present both an API that lets programmers specify pools manually and a profiling tool that discovers pools automatically in unmodified binaries.
We evaluate Whirlpool on a state-of-the-art NUCA cache. Whirlpool significantly outperforms prior approaches: on sequential programs, Whirlpool improves performance by up to 38% and reduces data movement energy by up to 53%; on parallel programs, Whirlpool improves performance by up to 67% and reduces data movement energy by up to 2.6x.National Science Foundation (U.S.) (grant CCF-1318384)National Science Foundation (U.S.) (CAREER-1452994)Samsung (Firm) (GRO award
CF3 Rotation in 3-(Trifluoromethyl)phenanthrene. X-ray Diffraction and ab Initio Electronic Structure Calculations
The molecular and crystal structure of 3-(trifluoromethyl)phenanthrene has been determined by X-ray diffraction. The structure of the isolated molecule has been calculated using electronic structure methods at the HF/3-21G, HF/6-31G*, MP2/6-31G* and B3LYP/6-31G* levels. The potential energy surfaces for the rotation of the CF3 group in both the isolated molecule and cluster models for the crystal were computed using electronic structure methods. The barrier height for CF3 rotation in the isolated molecule was calculated to be 0.40 kcal mol-1 at B3LYP/6-311+G**//B3LYP/6-311+G**. The B3LYP/6-31G* calculated CF3 rotational barrier in a 13-molecule cluster based on the X-ray data was found to be 2.6 kcal mol-1. The latter is in excellent agreement with experimental results from the NMR relaxation experiments reported in the companion paper (Beckmann, P. A.; Rosenberg, J.; Nordstrom, K.; Mallory, C. W.; Mallory, F. B. J. Phys. Chem. A 2006, 110, 3947). The computational results on the models for the solid state suggest that the intermolecular interaction between nearest neighbor pairs of CF3 groups in the crystal accounts for roughly 75% of the barrier to rotation in the solid state. This pair is found to undergo cooperative reorientation. We attribute the CF3 reorientational disorder in the crystal as observed by X-ray diffraction to the presence of a pair of minima on the potential energy surface and the effects of librational motion
- …