135 research outputs found

    Study of Spin and Decay-Plane Correlations of W Bosons in the e+e- -> W+W- Process at LEP

    Get PDF
    Data collected at LEP at centre-of-mass energies \sqrt(s) = 189 - 209 GeV are used to study correlations of the spin of W bosons using e+e- -> W+W- -> lnqq~ events. Spin correlations are favoured by data, and found to agree with the Standard Model predictions. In addition, correlations between the W-boson decay planes are studied in e+e- -> W+W- -> lnqq~ and e+e- -> W+W- -> qq~qq~ events. Decay-plane correlations, consistent with zero and with the Standard Model predictions, are measured

    Ultrarelativistic sources in nonlinear electrodynamics

    Get PDF
    The fields of rapidly moving sources are studied within nonlinear electrodynamics by boosting the fields of sources at rest. As a consequence of the ultrarelativistic limit the delta-like electromagnetic shock waves are found. The character of the field within the shock depends on the theory of nonlinear electrodynamics considered. In particular, we obtain the field of an ultrarelativistic charge in the Born-Infeld theory.Comment: 10 pages, 3 figure

    Measurement of the Cross Section for Open-Beauty Production in Photon-Photon Collisions at LEP

    Get PDF
    The cross section for open-beauty production in photon-photon collisions is measured using the whole high-energy and high-luminosity data sample collected by the L3 detector at LEP. This corresponds to 627/pb of integrated luminosity for electron-positron centre-of-mass energies from 189GeV to 209GeV. Events containing b quarks are identified through their semi-leptonic decay into electrons or muons. The e+e- -> e+e-b b~X cross section is measured within our fiducial volume and then extrapolated to the full phase space. These results are found to be in significant excess with respect to Monte Carlo predictions and next-to-leading order QCD calculations

    Epilepsy, hippocampal sclerosis and febrile seizures linked by common genetic variation around SCN1A

    Get PDF
    Epilepsy comprises several syndromes, amongst the most common being mesial temporal lobe epilepsy with hippocampal sclerosis. Seizures in mesial temporal lobe epilepsy with hippocampal sclerosis are typically drug-resistant, and mesial temporal lobe epilepsy with hippocampal sclerosis is frequently associated with important co-morbidities, mandating the search for better understanding and treatment. The cause of mesial temporal lobe epilepsy with hippocampal sclerosis is unknown, but there is an association with childhood febrile seizures. Several rarer epilepsies featuring febrile seizures are caused by mutations in SCN1A, which encodes a brain-expressed sodium channel subunit targeted by many anti-epileptic drugs. We undertook a genome-wide association study in 1018 people with mesial temporal lobe epilepsy with hippocampal sclerosis and 7552 control subjects, with validation in an independent sample set comprising 959 people with mesial temporal lobe epilepsy with hippocampal sclerosis and 3591 control subjects. To dissect out variants related to a history of febrile seizures, we tested cases with mesial temporal lobe epilepsy with hippocampal sclerosis with (overall n = 757) and without (overall n = 803) a history of febrile seizures. Meta-analysis revealed a genome-wide significant association for mesial temporal lobe epilepsy with hippocampal sclerosis with febrile seizures at the sodium channel gene cluster on chromosome 2q24.3 [rs7587026, within an intron of the SCN1A gene, P = 3.36 × 10−9, odds ratio (A) = 1.42, 95% confidence interval: 1.26-1.59]. In a cohort of 172 individuals with febrile seizures, who did not develop epilepsy during prospective follow-up to age 13 years, and 6456 controls, no association was found for rs7587026 and febrile seizures. These findings suggest SCN1A involvement in a common epilepsy syndrome, give new direction to biological understanding of mesial temporal lobe epilepsy with hippocampal sclerosis with febrile seizures, and open avenues for investigation of prognostic factors and possible prevention of epilepsy in some children with febrile seizure

    Genome-wide association analysis of genetic generalized epilepsies implicates susceptibility loci at 1q43, 2p16.1, 2q22.3 and 17q21.32

    Get PDF
    Genetic generalized epilepsies (GGEs) have a lifetime prevalence of 0.3% and account for 20-30% of all epilepsies. Despite their high heritability of 80%, the genetic factors predisposing to GGEs remain elusive. To identify susceptibility variants shared across common GGE syndromes, we carried out a two-stage genome-wide association study (GWAS) including 3020 patients with GGEs and 3954 controls of European ancestry. To dissect out syndrome-related variants, we also explored two distinct GGE subgroups comprising 1434 patients with genetic absence epilepsies (GAEs) and 1134 patients with juvenile myoclonic epilepsy (JME). Joint Stage-1 and 2 analyses revealed genome-wide significant associations for GGEs at 2p16.1 (rs13026414, Pmeta = 2.5 × 10−9, OR[T] = 0.81) and 17q21.32 (rs72823592, Pmeta = 9.3 × 10−9, OR[A] = 0.77). The search for syndrome-related susceptibility alleles identified significant associations for GAEs at 2q22.3 (rs10496964, Pmeta = 9.1 × 10−9, OR[T] = 0.68) and at 1q43 for JME (rs12059546, Pmeta = 4.1 × 10−8, OR[G] = 1.42). Suggestive evidence for an association with GGEs was found in the region 2q24.3 (rs11890028, Pmeta = 4.0 × 10−6) nearby the SCN1A gene, which is currently the gene with the largest number of known epilepsy-related mutations. The associated regions harbor high-ranking candidate genes: CHRM3 at 1q43, VRK2 at 2p16.1, ZEB2 at 2q22.3, SCN1A at 2q24.3 and PNPO at 17q21.32. Further replication efforts are necessary to elucidate whether these positional candidate genes contribute to the heritability of the common GGE syndrome

    Evaluation of presumably disease causing SCN1A variants in a cohort of common epilepsy syndromes

    Get PDF
    Objective: The SCN1A gene, coding for the voltage-gated Na+ channel alpha subunit NaV1.1, is the clinically most relevant epilepsy gene. With the advent of high-throughput next-generation sequencing, clinical laboratories are generating an ever-increasing catalogue of SCN1A variants. Variants are more likely to be classified as pathogenic if they have already been identified previously in a patient with epilepsy. Here, we critically re-evaluate the pathogenicity of this class of variants in a cohort of patients with common epilepsy syndromes and subsequently ask whether a significant fraction of benign variants have been misclassified as pathogenic. Methods: We screened a discovery cohort of 448 patients with a broad range of common genetic epilepsies and 734 controls for previously reported SCN1A mutations that were assumed to be disease causing. We re-evaluated the evidence for pathogenicity of the identified variants using in silico predictions, segregation, original reports, available functional data and assessment of allele frequencies in healthy individuals as well as in a follow up cohort of 777 patients. Results and Interpretation: We identified 8 known missense mutations, previously reported as path

    16p11.2 600 kb Duplications confer risk for typical and atypical Rolandic epilepsy

    Get PDF
    Rolandic epilepsy (RE) is the most common idiopathic focal childhood epilepsy. Its molecular basis is largely unknown and a complex genetic etiology is assumed in the majority of affected individuals. The present study tested whether six large recurrent copy number variants at 1q21, 15q11.2, 15q13.3, 16p11.2, 16p13.11 and 22q11.2 previously associated with neurodevelopmental disorders also increase risk of RE. Our association analyses revealed a significant excess of the 600 kb genomic duplication at the 16p11.2 locus (chr16: 29.5-30.1 Mb) in 393 unrelated patients with typical (n = 339) and atypical (ARE; n = 54) RE compared with the prevalence in 65 046 European population controls (5/393 cases versus 32/65 046 controls; Fisher's exact test P = 2.83 × 10−6, odds ratio = 26.2, 95% confidence interval: 7.9-68.2). In contrast, the 16p11.2 duplication was not detected in 1738 European epilepsy patients with either temporal lobe epilepsy (n = 330) and genetic generalized epilepsies (n = 1408), suggesting a selective enrichment of the 16p11.2 duplication in idiopathic focal childhood epilepsies (Fisher's exact test P = 2.1 × 10−4). In a subsequent screen among children carrying the 16p11.2 600 kb rearrangement we identified three patients with RE-spectrum epilepsies in 117 duplication carriers (2.6%) but none in 202 carriers of the reciprocal deletion. Our results suggest that the 16p11.2 duplication represents a significant genetic risk factor for typical and atypical R

    Study of Neutral-Current Four-Fermion and ZZ Production in e+e−e^+ e^- Collisions at s\sqrt{s}= 183 GeV

    Get PDF
    Study of Neutral--Current Four--Fermion and ZZ \\ Production in e+e−\rm e^+ e^- Collisions at s=\rm \sqrt{s}= 183 GeV A study of neutral--current four--fermion processes is performed using a data sample corresponding to 55.3~pb−1^{-1} of integrated luminosity collected by the L3 detector at LEP at an average centre--of--mass energy of 183~\GeV. The neutral--current four--fermion cross sections for final states with a pair of charged leptons plus jets and with four charged leptons are measured to be consistent with the Standard Model predictions. Events with fermion pair masses close to the Z boson mass are selected in all observable final states and the ZZ production cross section is measured to be %\begin{center} σZZ=0.30−0.16  −0.03+0.22  +0.07 pb,\rm \sigma_{ZZ} = 0.30 ^{+0.22\,\,+0.07}_{-0.16\,\,-0.03}\,\mathrm{pb}, %\end{center} in agreement with the Standard Model expectation. No evidence for the existence of anomalous triple gauge boson ZZZ and ZZÎł\gamma couplings is found and limits on these couplings are set

    Search for R-Parity Breaking Sneutrino Exchange at LEP

    Get PDF
    We report on a search for R--parity breaking effects due to supersymmetric tau--sneutrino exchange in the reactions e+e- to e+e- and e+e- to mu+mu- at centre--of--mass energies from 91~{\GeV} to 172~{\GeV}, using the L3 detector at LEP. No evidence for deviations from the Standard Model expectations of the measured cross sections and forward--backward asymmetries for these reactions is found. Upper limits for the couplings λ131\lambda_{131} and λ232\lambda_{232} for sneutrino masses up to m_{\SNT} \leq 190~\GeV are determined from an analysis of the expected effects due to tau sneutrino exchange

    Inclusive Charm Production in Two-Photon Collisions at LEP

    Get PDF
    The cross section of charm production in γγ\mathrm{\gamma \gamma} collisions σ(e+e−→e+e−ccˉX)\mathrm{\sigma (e^+e^- \rightarrow e^+e^-c\bar{c} X)} is measured at LEP with the L3 detector at centre of mass energies from 91 GeV to 183 GeV. Charmed hadrons are identified by electrons and muons from semi-leptonic decays. The direct process γγ→ccˉ\mathrm{\gamma \gamma \rightarrow c \bar{c}} is found to be insufficient to describe the data. The measured cross section values and event distributions require contributions from resolved processes, which are sensitive to the gluon density in the photon
    • 

    corecore