478 research outputs found

    Large conditional single-photon cross-phase modulation

    Get PDF
    Deterministic optical quantum logic requires a nonlinear quantum process that alters the phase of a quantum optical state by π\pi through interaction with only one photon. Here, we demonstrate a large conditional cross-phase modulation between a signal field, stored inside an atomic quantum memory, and a control photon that traverses a high-finesse optical cavity containing the atomic memory. This approach avoids fundamental limitations associated with multimode effects for traveling optical photons. We measure a conditional cross-phase shift of up to π/3\pi/3 between the retrieved signal and control photons, and confirm deterministic entanglement between the signal and control modes by extracting a positive concurrence. With a moderate improvement in cavity finesse, our system can reach a coherent phase shift of π\pi at low loss, enabling deterministic and universal photonic quantum logic.Comment: 22 pages, 5 figures, 1 table, includes supplementary informatio

    Partially Nondestructive Continuous Detection of Individual Traveling Optical Photons

    Get PDF
    We report the continuous and partially nondestructive measurement of optical photons. For a weak light pulse traveling through a slow-light optical medium (signal), the associated atomic-excitation component is detected by another light beam (probe) with the aid of an optical cavity. We observe strong correlations of gsp(2)=4.4(5)g^{(2)}_{sp}=4.4(5) between the transmitted signal and probe photons. The observed (intrinsic) conditional nondestructive quantum efficiency ranges between 13% and 1% (65% and 5%) for a signal transmission range of 2% to 35%, at a typical time resolution of 2.5 μ\mus. The maximal observed (intrinsic) device nondestructive quantum efficiency, defined as the product of the conditional nondestructive quantum efficiency and the signal transmission, is 0.5% (2.4%). The normalized cross-correlation function violates the Cauchy-Schwarz inequality, confirming the non-classical character of the correlations

    Estimation of Costs of Phosphorus Removal In Wastewater Treatment Facilities: Adaptation of Existing Facilities

    Get PDF
    As part of a wider enquiry into the feasibility of offset banking schemes as a means to implement pollutant trading within Georgia watersheds, this is the second of two reports addressing the issue of estimating costs for upgrades in the performance of phosphorus removal in point-source wastewater treatment facilities. Earlier, preliminary results are presented in Jiang et al (2004) (Working Paper # 2004-010 of the Georgia Water Planning and Policy Center). The present study is much more detailed and employs an advanced software package (WEST®, Hemmis nv, Kortrijk, Belgium) for simulating a variety of treatment plant designs operating under typical Georgia conditions. Specifically, upgrades in performance, in a single step, from a plant working at an effluent limit of less than 2.0 mg/l phosphorus to one working with limits variously ranging between less than 1.0 mg/l to less than 0.05 mg/l phosphorus are simulated and the resulting costs of the upgrade estimated.Five capacities of plant are considered, from 1 MGD to 100 MGD. Three strategic, alternative designs for the facility are considered: the basic activated sludge (AS) process with chemical addition, the Anoxic/Oxic (A/O) arrangement of the AS process, and the Anaerobic/Aerobic/Oxic (A/A/O) arrangement of the AS process. Upgrades in performance are consistent with the logical alternatives for adapting these options. Cost comparisons are made primarily on the basis of the incremental cost of the upgrade, i.e., from the base-case, reference plant to that performing at the higher level, as expressed through the incremental Total Annual Economic Cost (TAEC; in )andthemarginalunitcostofphosphorusremoval,expressedin() and the marginal unit cost of phosphorus removal, expressed in (/kg).For the most stringent upgrade, for example, to a plant generating an effluent with less than 0.05 mg/l phosphorus, these marginal costs -- the cost of the additional phosphorus removed as a result of the upgrade -- amount to something of the order of 150-425 $/kg, with the upper bound being associated with the smallest plant configuration (1 MGD). Working Paper Number 2005-001

    All-Optical Switch and Transistor Gated by One Stored Photon

    Full text link
    The realization of an all-optical transistor where one 'gate' photon controls a 'source' light beam, is a long-standing goal in optics. By stopping a light pulse in an atomic ensemble contained inside an optical resonator, we realize a device in which one stored gate photon controls the resonator transmission of subsequently applied source photons. A weak gate pulse induces bimodal transmission distribution, corresponding to zero and one gate photons. One stored gate photon produces fivefold source attenuation, and can be retrieved from the atomic ensemble after switching more than one source photon. Without retrieval, one stored gate photon can switch several hundred source photons. With improved storage and retrieval efficiency, our work may enable various new applications, including photonic quantum gates, and deterministic multiphoton entanglement.Comment: 20 pages, 5 figures. Published in Science. Includes supplemental informatio

    A simulation methodology for superconducting qubit readout fidelity

    Get PDF
    Qubit readout is a critical part of any quantum computer including the superconducting-qubit-based one. The readout fidelity is affected by the readout pulse width, readout pulse energy, resonator design, qubit design, qubit-resonator coupling, and the noise generated along the readout path. It is thus important to model and predict the fidelity based on various design parameters along the readout path. In this work, a simulation methodology for superconducting qubit readout fidelity is proposed and implemented using Matlab and Ansys HFSS to allow co-optimization in the readout path. As an example, parameters are taken from an actual superconducting-qubit-based quantum computer. Without any calibrations, the model is able to predict the readout error of the system as a function of the readout pulse power. It is found that the system can still maintain high fidelity even if the input power is reduced by 7 dB. This can be used to guide the design and optimization of a superconducting qubit readout system

    One-dimensional array of ion chains coupled to an optical cavity

    Get PDF
    We present a novel hybrid system where an optical cavity is integrated with a microfabricated planar-electrode ion trap. The trap electrodes produce a tunable periodic potential allowing the trapping of up to 50 separate ion chains spaced by 160 μ\mum along the cavity axis. Each chain can contain up to 20 individually addressable Yb\textsuperscript{+} ions coupled to the cavity mode. We demonstrate deterministic distribution of ions between the sites of the electrostatic periodic potential and control of the ion-cavity coupling. The measured strength of this coupling should allow access to the strong collective coupling regime with \lesssim10 ions. The optical cavity could serve as a quantum information bus between ions or be used to generate a strong wavelength-scale periodic optical potential.Comment: 15 pages, 6 figures, submitted to New Journal of Physic
    corecore