2,821 research outputs found
Vibrational exciton nanoimaging of phases and domains in porphyrin nanocrystals.
Much of the electronic transport, photophysical, or biological functions of molecular materials emerge from intermolecular interactions and associated nanoscale structure and morphology. However, competing phases, defects, and disorder give rise to confinement and many-body localization of the associated wavefunction, disturbing the performance of the material. Here, we employ vibrational excitons as a sensitive local probe of intermolecular coupling in hyperspectral infrared scattering scanning near-field optical microscopy (IR s-SNOM) with complementary small-angle X-ray scattering to map multiscale structure from molecular coupling to long-range order. In the model organic electronic material octaethyl porphyrin ruthenium(II) carbonyl (RuOEP), we observe the evolution of competing ordered and disordered phases, in nucleation, growth, and ripening of porphyrin nanocrystals. From measurement of vibrational exciton delocalization, we identify coexistence of ordered and disordered phases in RuOEP that extend down to the molecular scale. Even when reaching a high degree of macroscopic crystallinity, identify significant local disorder with correlation lengths of only a few nanometers. This minimally invasive approach of vibrational exciton nanospectroscopy and -imaging is generally applicable to provide the molecular-level insight into photoresponse and energy transport in organic photovoltaics, electronics, or proteins
Mechanistic unity of the predictive mind
It is often recognized that cognitive science employs a diverse explanatory toolkit. It has also been argued that cognitive scientists should embrace this explanatory diversity rather than pursue search for some grand unificatory framework or theory. This pluralist stance dovetails with the mechanistic view of cognitive-scientific explanation. However, one recently proposed theory – based on an idea that the brain is a predictive engine – opposes the spirit of pluralism by unapologetically wearing unificatory ambitions on its sleeves. In this paper, my aim is to investigate those pretentions to elucidate what sort of unification is on offer. I challenge the idea that explanatory unification of cognitive science follows from the Free Energy Principle. I claim that if the predictive story is to provide an explanatory unification, it is rather by proposing that many distinct cognitive mechanisms fall under the same functional schema that pertains to prediction error minimization. Seen this way, the brain is not simply a predictive mechanism – it is a collection of predictive mechanisms. I also pursue a more general aim of investigating the value of unificatory power for mechanistic explanations. I argue that even though unification is not an absolute evaluative criterion for mechanistic explanations, it may play an epistemic role in evaluating the credibility of an explanation relative to its direct competitors
Developing a strawberry yogurt fortified with marine fish oil \u3csup\u3e1\u3c/sup\u3e
Fortified dairy products appeal to a wide variety of consumers and have the potential to increase sales in the yogurt industry and help increase intake of long-chain n-3 fatty acids. The objectives of this study were to develop a strawberry yogurt containing microencapsulated salmon oil (MSO; 2% wt/vol) and evaluate its characteristics during 1 mo of storage. Unpurified salmon oil (USO) was purified (PSO) and both USO and PSO were analyzed for peroxide value (PV), anisidine value (AV), total oxidation, free fatty acids (FFA), and moisture content. A stable emulsion was prepared with 7% PSO, 22% gum arabic, 11% maltodextrin, and 60% water. The emulsion was spray-dried to produce MSO. The MSO was added to strawberry-flavored yogurt (SYMSO) before pasteurization and homogenization, and a control (SY) without MSO was produced. Both yogurts were stored for 1 mo at 4°C and we determined the quality characteristics including acidity (pH), syneresis, thiobarbituric acid (TBA), fatty acid methyl ester composition, color, and lactic acid bacteria (LAB) count. The entire experiment was replicated 3 times. Total oxidation (unitless) of USO, PSO, and MSO was calculated to be 20.7 ± 1.26, 10.9 ± 0.1, and 13.4 ± 0.25, respectively. Free fatty acid contents were 1.61 ± 0.19%, 0.59 ± 0.02%, and 0.77 ± 0.02% for USO, PSO, and MSO, respectively. Eicosapentaenoic acid and docosahexaenoic acid were the predominant polyunsaturated fatty acids in MSO and in SYMSO, but neither was detected in SY. Fortification of SY with MSO had no significant effect on yogurt pH or syneresis. A decrease in concentration of lactic acid bacteria was observed during the storage of all yogurts. Thiobarbituric acid values significantly increased as storage time increased and SY had a significantly lighter (higher L *) and less yellow (lower b *) color than SYMSO. Although some slight differences were observed in the color and oxidation of SYMSO compared with SY, the study demonstrated that SY could be fortified with salmon oil. © 2011 American Dairy Science Association
What can polysemy tell us about theories of explanation?
Philosophical accounts of scientific explanation are broadly divided into ontic and epistemic views. This paper explores the idea that the lexical ambiguity of the verb to explain and its nominalisation supports an ontic conception of explanation. I analyse one argument which challenges this strategy by criticising the claim that explanatory talk is lexically ambiguous, 375–394, 2012). I propose that the linguistic mechanism of transfer of meaning, 109–132, 1995) provides a better account of the lexical alternations that figure in the systematic polysemy of explanatory talk, and evaluate the implications of this proposal for the debate between ontic and epistemic conceptions of scientific explanation
Long-Term Potentiation: One Kind or Many?
Do neurobiologists aim to discover natural kinds? I address this question in this chapter via a critical analysis of classification practices operative across the 43-year history of research on long-term potentiation (LTP). I argue that this 43-year history supports the idea that the structure of scientific practice surrounding LTP research has remained an obstacle to the discovery of natural kinds
Modeling Life as Cognitive Info-Computation
This article presents a naturalist approach to cognition understood as a
network of info-computational, autopoietic processes in living systems. It
provides a conceptual framework for the unified view of cognition as evolved
from the simplest to the most complex organisms, based on new empirical and
theoretical results. It addresses three fundamental questions: what cognition
is, how cognition works and what cognition does at different levels of
complexity of living organisms. By explicating the info-computational character
of cognition, its evolution, agent-dependency and generative mechanisms we can
better understand its life-sustaining and life-propagating role. The
info-computational approach contributes to rethinking cognition as a process of
natural computation in living beings that can be applied for cognitive
computation in artificial systems.Comment: Manuscript submitted to Computability in Europe CiE 201
- …