31 research outputs found

    Adsorbate-induced lifting of substrate relaxation is a general mechanism governing titania surface chemistry

    Get PDF
    Under ambient conditions, almost all metals are coated by an oxide. These coatings, the result of a chemical reaction, are not passive. Many of them bind, activate and modify adsorbed molecules, processes that are exploited, for example, in heterogeneous catalysis and photochemistry. Here we report an effect of general importance that governs the bonding, structure formation and dissociation of molecules on oxidic substrates. For a specific example, methanol adsorbed on the rutile TiO2(110) single crystal surface, we demonstrate by using a combination of experimental and theoretical techniques that strongly bonding adsorbates can lift surface relaxations beyond their adsorption site, which leads to a significant substrate-mediated interaction between adsorbates. The result is a complex superstructure consisting of pairs of methanol molecules and unoccupied adsorption sites. Infrared spectroscopy reveals that the paired methanol molecules remain intact and do not deprotonate on the defect-free terraces of the rutile TiO2(110) surface

    Adsorbate-induced lifting of substrate relaxation is a general mechanism governing titania surface chemistry

    Get PDF
    Under ambient conditions, almost all metals are coated by an oxide. These coatings, the result of a chemical reaction, are not passive. Many of them bind, activate and modify adsorbed molecules, processes that are exploited, for example, in heterogeneous catalysis and photochemistry. Here we report an effect of general importance that governs the bonding, structure formation and dissociation of molecules on oxidic substrates. For a specific example, methanol adsorbed on the rutile TiO2(110) single crystal surface, we demonstrate by using a combination of experimental and theoretical techniques that strongly bonding adsorbates can lift surface relaxations beyond their adsorption site, which leads to a significant substrate-mediated interaction between adsorbates. The result is a complex superstructure consisting of pairs of methanol molecules and unoccupied adsorption sites. Infrared spectroscopy reveals that the paired methanol molecules remain intact and do not deprotonate on the defect-free terraces of the rutile TiO2(110) surface

    Evidence for photogenerated intermediate hole polarons in ZnO

    No full text
    Despite their pronounced importance for oxide-based photochemistry, optoelectronics and photovoltaics, only fairly little is known about the polaron lifetimes and binding energies. Polarons represent a crucial intermediate step populated immediately after dissociation of the excitons formed in the primary photoabsorption process. Here we present a novel approach to studying photoexcited polarons in an important photoactive oxide, ZnO, using infrared (IR) reflection–absorption spectroscopy (IRRAS) with a time resolution of 100 ms. For well-defined (10-10) oriented ZnO single-crystal substrates, we observe intense IR absorption bands at around 200 meV exhibiting a pronounced temperature dependence. On the basis of first-principles-based electronic structure calculations, we assign these features to hole polarons of intermediate coupling strength.Peer reviewe

    Commodity Eats Innovation for Breakfast: A Model for Differentiating Feature Realization

    No full text
    Once supporting the electrical and mechanical functionality, software today became the main competitive advantage in products. However, in the companies that we study, the way in which software features are developed still reflects the traditional ‘requirements over the wall’ approach. As a consequence, individual departments prioritize what they believe is the most important and are unable to identify which features are regularly used – ‘flow’, there to be bought – ‘wow’, differentiating and that add value to customers, or which are regarded commodity. In this paper, and based on case study research in three large software-intensive companies, we (1) provide empirical evidence that companies do not distinguish between different types of features, which causes poor allocation of R&D efforts and suppresses innovation, and (2) develop a model in which we depict the activities for differentiating and working with different types of features and stakeholders
    corecore