7 research outputs found

    Dietary Proteins as Determinants of Metabolic and Physiologic Functions of the Gastrointestinal Tract

    Get PDF
    Dietary proteins elicit a wide range of nutritional and biological functions. Beyond their nutritional role as the source of amino acids for protein synthesis, they are instrumental in the regulation of food intake, glucose and lipid metabolism, blood pressure, bone metabolism and immune function. The interaction of dietary proteins and their products of digestion with the regulatory functions of the gastrointestinal (GI) tract plays a dominant role in determining the physiological properties of proteins. The site of interaction is widespread, from the oral cavity to the colon. The characteristics of proteins that influence their interaction with the GI tract in a source-dependent manner include their physico-chemical properties, their amino acid composition and sequence, their bioactive peptides, their digestion kinetics and also the non-protein bioactive components conjugated with them. Within the GI tract, these products affect several regulatory functions by interacting with receptors releasing hormones, affecting stomach emptying and GI transport and absorption, transmitting neural signals to the brain, and modifying the microflora. This review discusses the interaction of dietary proteins during digestion and absorption with the physiological and metabolic functions of the GI tract, and illustrates the importance of this interaction in the regulation of amino acid, glucose, lipid metabolism, and food intake

    X-Ray Diffraction under Extreme Conditions at the Advanced Light Source

    No full text
    The more than a century-old technique of X-ray diffraction in either angle or energy dispersive mode has been used to probe materials’ microstructure in a number of ways, including phase identification, stress measurements, structure solutions, and the determination of physical properties such as compressibility and phase transition boundaries. The study of high-pressure and high-temperature materials has strongly benefitted from this technique when combined with the high brilliance source provided by third generation synchrotron facilities, such as the Advanced Light Source (ALS) (Berkeley, CA, USA). Here we present a brief review of recent work at this facility in the field of X-ray diffraction under extreme conditions, including an overview of diamond anvil cells, X-ray diffraction, and a summary of three beamline capabilities conducting X-ray diffraction high-pressure research in the diamond anvil cell

    Effects of an 18-week exercise programme started early during breast cancer treatment: a randomised controlled trial

    No full text
    Background: Exercise started shortly after breast cancer diagnosis might prevent or diminish fatigue complaints. The Physical Activity during Cancer Treatment (PACT) study was designed to primarily examine the effects of an 18-week exercise intervention, offered in the daily clinical practice setting and starting within 6 weeks after diagnosis, on preventing an increase in fatigue. Methods: This multi-centre controlled trial randomly assigned 204 breast cancer patients to usual care (n = 102) or supervised aerobic and resistance exercise (n = 102). By design, all patients received chemotherapy between baseline and 18 weeks. Fatigue (i.e., primary outcome at 18 weeks), quality of life, anxiety, depression, and physical fitness were measured at 18 and 36 weeks. Results: Intention-to-treat mixed linear model analyses showed that physical fatigue increased significantly less during cancer treatment in the intervention group compared to control (mean between-group differences at 18 weeks: -1.3; 95 % CI -2.5 to -0.1; effect size -0.30). Results for general fatigue were comparable but did not reach statistical significance (-1.0, 95% CI -2.1; 0.1; effect size -0.23). At 18 weeks, submaximal cardiorespiratory fitness and several muscle strength tests (leg extension and flexion) were significantly higher in the intervention group compared to control, whereas peak oxygen uptake did not differ between groups. At 36 weeks these differences were no longer statistically significant. Quality of life outcomes favoured the exercise group but were not significantly different between groups. Conclusions: A supervised 18-week exercise programme offered early in routine care during adjuvant breast cancer treatment showed positive effects on physical fatigue, submaximal cardiorespiratory fitness, and muscle strength. Exercise early during treatment of breast cancer can be recommended. At 36 weeks, these effects were no longer statistically significant. This might have been caused by the control participants' high physical activity levels during follow-up
    corecore