64 research outputs found

    The phosphoinositide 3-kinase-dependent activation of Btk is required for optimal eicosanoid production and generation of reactive oxygen species in antigen-stimulated mast cells

    No full text
    Activated mast cells are a major source of the eicosanoids PGD(2) and leukotriene C(4) (LTC(4)), which contribute to allergic responses. These eicosanoids are produced following the ERK1/2-dependent activation of cytosolic phospholipase A(2), thus liberating arachidonic acid, which is subsequently metabolized by the actions of 5-lipoxygenase and cyclooxygenase to form LTC(4) and PGD(2), respectively. These pathways also generate reactive oxygen species (ROS), which have been proposed to contribute to FcepsilonRI-mediated signaling in mast cells. In this study, we demonstrate that, in addition to ERK1/2-dependent pathways, ERK1/2-independent pathways also regulate FcepsilonRI-mediated eicosanoid and ROS production in mast cells. A role for the Tec kinase Btk in the ERK1/2-independent regulatory pathway was revealed by the significantly attenuated FcepsilonRI-dependent PGD(2), LTC(4), and ROS production in bone marrow-derived mast cells of Btk(-/-) mice. The FcepsilonRI-dependent activation of Btk and eicosanoid and ROS generation in bone marrow-derived mast cells and human mast cells were similarly blocked by the PI3K inhibitors, Wortmannin and LY294002, indicating that Btk-regulated eicosanoid and ROS production occurs downstream of PI3K. In contrast to ERK1/2, the PI3K/Btk pathway does not regulate cytosolic phospholipase A(2) phosphorylation but rather appears to regulate the generation of ROS, LTC(4), and PGD(2) by contributing to the necessary Ca(2+) signal for the production of these molecules. These data demonstrate that strategies to decrease mast cell production of ROS and eicosanoids would have to target both ERK1/2- and PI3K/Btk-dependent pathways

    Regulation of Reactive Oxygen Species and the Antioxidant Protein DJ-1 in Mastocytosis

    Get PDF
    Neoplastic accumulation of mast cells in systemic mastocytosis (SM) associates with activating mutations in the receptor tyrosine kinase KIT. Constitutive activation of tyrosine kinase oncogenes has been linked to imbalances in oxidant/antioxidant mechanisms in other myeloproliferative disorders. However, the impact of KIT mutations on the redox status in SM and the potential therapeutic implications are not well understood. Here, we examined the regulation of reactive oxygen species (ROS) and of the antioxidant protein DJ-1 (PARK-7), which increases with cancer progression and acts to lessen oxidative damage to malignant cells, in relationship with SM severity. ROS levels were increased in both indolent (ISM) and aggressive variants of the disease (ASM). However, while DJ-1 levels were reduced in ISM with lower mast cell burden, they rose in ISM with higher mast cell burden and were significantly elevated in patients with ASM. Studies on mast cell lines revealed that activating KIT mutations induced constant ROS production and consequent DJ-1 oxidation and degradation that could explain the reduced levels of DJ-1 in the ISM population, while IL-6, a cytokine that increases with disease severity, caused a counteracting transcriptional induction of DJ-1 which would protect malignant mast cells from oxidative damage. A mouse model of mastocytosis recapitulated the biphasic changes in DJ-1 and the escalating IL-6, ROS and DJ-1 levels as mast cells accumulate, findings which were reversed with anti-IL-6 receptor blocking antibody. Our findings provide evidence of increased ROS and a biphasic regulation of the antioxidant DJ-1 in variants of SM and implicate IL-6 in DJ-1 induction and expansion of mast cells with KIT mutations. We propose consideration of IL-6 blockade as a potential adjunctive therapy in the treatment of patients with advanced mastocytosis, as it would reduce DJ-1 levels making mutation-positive mast cells vulnerable to oxidative damage

    Preterm birth and exercise capacity: what do we currently know?

    Get PDF
    ObjectivesThe long-term cardiopulmonary outcomes following preterm birth during the surfactant era remain unclear. Respiratory symptoms, particularly exertional symptoms, are common in preterm children. Therefore, cardiopulmonary exercise testing may provide insights into the pathophysiology driving exertional respiratory symptoms in those born preterm. This review aims to outline the current knowledge of cardiopulmonary exercise testing in the assessment of children born preterm in the surfactant era.DesignThis study is a narrative literature review.MethodsPublished manuscripts concerning the assessment of pulmonary outcomes using cardiopulmonary exercise testing in preterm children (aged <18 years) were reviewed. Search terms related to preterm birth, bronchopulmonary dysplasia, and exercise were entered into electronic databases, including Medline, PubMed, and Google Scholar. Reference lists from included studies were scanned for additional manuscripts.ResultsPreterm children have disrupted lung development with significant structural and functional lung disease and increased respiratory symptoms. The association between these (resting) assessments of respiratory health and exercise capacity is unclear; however, expiratory flow limitation and an altered ventilatory response (rapid, shallow breathing) are seen during exercise. Due to the heterogeneity of participants, treatments, and exercise protocols, the effect of the aforementioned limitations on exercise capacity in children born preterm is conflicting and poorly understood.ConclusionRisk factors for reduced exercise capacity in those born preterm remain poorly understood; however, utilizing cardiopulmonary exercise testing to its full potential, the pathophysiology of exercise limitation in survivors of preterm birth will enhance our understanding of the role exercise may play. The role of exercise interventions in mitigating the risk of chronic disease and premature death following preterm birth has yet to be fully realized and should be a focus of future robust randomized controlled trials

    An investigation in the correlation between Ayurvedic body-constitution and food-taste preference

    Get PDF

    Role of calcium, protein kinase C and MAP kinase in the activation of mast cells

    Get PDF
    The mechanisms of activation of mast cells have been studied in most detail in rat RBL-2H3 cells. These cells respond to antigen via the IgE receptor (FceRI) through sequential activation of the tyrosine kinases, Lyn and Syk, and to adenosine analogs via the adenosine A3 receptor (A3R) and a pertussis toxin-sensitive G protein, most likely Gi-3. Other receptors, introduced through gene transfection, include the muscarinic ml receptor (mlR) which acts via Gq/11. Stimulation of cells via FceRI, A3R or ml R leads to the activation of phospholipase (PL) C, PLD and mitogen-activated protein (MAP) kinase resulting in the generation of inositol phosphates and diglycerides, an increase of cytosolic Ca2+, the activation of protein kinase C (PKC) and the phosphorylation of various proteins by PKC and MAP kinase. The extent and time course of these events varies for each receptor. These variations, as well as the effects of pharmacologic probes, gene transfection and reconstitution of responses in washed permeabilized cells, indicate how these events relate to functional responses. A modest but sustained elevation of cytosolic Ca2+ through an influx of extracellular Ca2+ and activation of PKCβ and PKCδ are sufficient for optimal release of preformed secretory granules. Phosphorylation of a cytosolic PLAj by AMP kinase (p42mapk) and a modest increase in cytosolic Ca2+ are necessary for the activation of Pl^ and the binding of PLA2 to membranes, respectively. Finally, both de novo generation and secretion via Golgi-derived vesicles of certain cytokines are dependent on Ca2+ and PKC as well as additional signals most probably phosphorylation of proteins by Syk and p42mapk
    corecore