254 research outputs found
Formation de corrugations hydrothermales lors de l'altération des roches ultramafiques
International audienceDuring shallow subsurface (< 200 m depth) weathering processes, temperatures may reach several tens of °C as a result of exothermic chemical reactions, such as hydration of olivine in ultramafic rocks or chloritization of biotite in granitic rocks. These mineralogical transformations enhance mineral fracturing, and the growth of fracture networks leads to further reactions and increases the permeability. The subsequent deepening of the weathering front creates new reactions, thus self-maintaining the weathering process over several million years (Myr). For more than 20 Myr, the peridotite massifs of New Caledonia have undergone intense weathering that has produced thick lateritic weathering mantles. The observable undulations of the weathering front and the protrusions of unweathered peridotite, from several meters to several tens of meters high, attest to a corrugated bedrock topography, which may result from inhomogeneous fluid circulation patterns within the coarse, permeable and porous (30-50%) saprolite layer. Combined together, the excess heat (up to â 100°C) and high permeability (10-14 to 2 10-13 mÂČ) within lateritic weathering mantles could potentially trigger hydrothermal convection (buoyancy-driven flow). This was numerically modeled by accounting for temperature-dependent fluid density and viscosity, and for time-dependent and spatially varying parameters simulating the deepening of the weathering front. Modeling the transient evolution of the thermal and flow velocity fields over 10 Myr reveals that hydrothermal convection can be triggered in the weathering lateritic mantles of New Caledonia, even on sloped surfaces where topography-driven flow prevails. Convective cells develop above the weathering front, and the amplitudes of thermal undulations are enhanced when feedback mechanisms between permeability and temperature are accounted for. The models also allow definition of the most probable zones of mineralization and reveal two-dimensional corrugations below which weathering is no longer efficient
A novel whole-cell lysate kinase assay identifies substrates of the p38 MAPK in differentiating myoblasts
<p>Abstract</p> <p>Background</p> <p>The p38α mitogen-activated protein kinase (MAPK) is a critical mediator of myoblast differentiation, and does so in part through the phosphorylation and regulation of several transcription factors and chromatin remodelling proteins. However, whether p38α is involved in processes other than gene regulation during myogenesis is currently unknown, and why other p38 isoforms cannot compensate for its loss is unclear.</p> <p>Methods</p> <p>To further characterise the involvement of p38α during myoblast differentiation, we developed and applied a simple technique for identifying relevant <it>in vivo </it>kinase substrates and their phosphorylation sites. In addition to identifying substrates for one kinase, the technique can be used <it>in vitro </it>to compare multiple kinases in the same experiment, and we made use of this to study the substrate specificities of the p38α and ÎČ isoforms.</p> <p>Results</p> <p>Applying the technique to p38α resulted in the identification of seven <it>in vivo </it>phosphorylation sites on six proteins, four of which are cytoplasmic, in lysate derived from differentiating myoblasts. An <it>in vitro </it>comparison with p38ÎČ revealed that substrate specificity does not discriminate these two isoforms, but rather that their distinguishing characteristic appears to be cellular localisation.</p> <p>Conclusion</p> <p>Our results suggest p38α has a novel cytoplasmic role during myogenesis and that its unique cellular localisation may be why p38ÎČ and other isoforms cannot compensate for its absence. The substrate-finding approach presented here also provides a necessary tool for studying the hundreds of protein kinases that exist and for uncovering the deeper mechanisms of phosphorylation-dependent cell signalling.</p
FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast
The budding yeast, Saccharomyces cerevisiae, has emerged as an archetype of eukaryotic cell biology. Here we show that S. cerevisiae is also a model for the evolution of cooperative behavior by revisiting flocculation, a self-adherence phenotype lacking in most laboratory strains. Expression of the gene FLO1 in the laboratory strain S288C restores flocculation, an altered physiological state, reminiscent of bacterial biofilms. Flocculation protects the FLO1 expressing cells from multiple stresses, including antimicrobials and ethanol. Furthermore, FLO1(+) cells avoid exploitation by nonexpressing flo1 cells by self/non-self recognition: FLO1(+) cells preferentially stick to one another, regardless of genetic relatedness across the rest of the genome. Flocculation, therefore, is driven by one of a few known "green beard genes,'' which direct cooperation toward other carriers of the same gene. Moreover, FLO1 is highly variable among strains both in expression and in sequence, suggesting that flocculation in S. cerevisiae is a dynamic, rapidly evolving social trait
Calcium sequestration by fungal melanin inhibits calcium-calmodulin signalling to prevent LC3-associated phagocytosis
LC3-associated phagocytosis (LAP) is a non-canonical autophagy pathway regulated by Rubicon, with an emerging role in immune homeostasis and antifungal host defence. Aspergillus cell wall melanin protects conidia (spores) from killing by phagocytes and promotes pathogenicity through blocking nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent activation of LAP. However, the signalling regulating LAP upstream of Rubicon and the mechanism of melanin-induced inhibition of this pathway remain incompletely understood. Herein, we identify a Ca2+ signalling pathway that depends on intracellular Ca2+ sources from endoplasmic reticulum, endoplasmic reticulum-phagosome communication, Ca2+ release from phagosome lumen and calmodulin (CaM) recruitment, as a master regulator of Rubicon, the phagocyte NADPH oxidase NOX2 and other molecular components of LAP. Furthermore, we provide genetic evidence for the physiological importance of Ca2+-CaM signalling in aspergillosis. Finally, we demonstrate that Ca2+ sequestration by Aspergillus melanin inside the phagosome abrogates activation of Ca2+-CaM signalling to inhibit LAP. These findings reveal the important role of Ca2+-CaM signalling in antifungal immunity and identify an immunological function of Ca2+ binding by melanin pigments with broad physiological implications beyond fungal disease pathogenesis.Onassis Foundation under the âSpecial Grant and
Support Program for Scholarsâ Association Membersâ (Grant no. R ZM 003-1/2016-2017); G.C. was supported by grants from the Greek State Scholarship Foundation (I.K.Y.), the Hellenic General Secretariat for Research and Technology-Excellence program (ARISTEIA) and a Research Grant from Institut MĂ©rieux; J.P.L. was supported
by European Communityâs Seventh Framework Programme (FP7/2007-2013) under grant agreement 260338 ALLFUN and ANR-10-BLAN-1309 HYDROPHOBIN, and the Association Vaincre La Mucoviscidose (RF20140501052/1/1/141); H.F. and N.M.N. were supported by the project FROnTHERA (NORTE-01-0145-FEDER-000023),
supported by Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF), and by Fundação para a CiĂȘncia e Tecnologia (FCT) project SPARTAN (PTDC/CTM-BIO/4388/2014), funded through the PIDDAC Program. A.C. and C.C. were supported by NORTE 2020, under the Portugal 2020
Partnership Agreement, through the ERDF (NORTE-01-0145-FEDER-000013), and by FCT (IF/00735/2014 and SFRH/BPD/96176/2013). G.S.D. and J.L.F. were supported by NIH grant AI-106269. K.J.K-C is supported by the Division of Intramural Research (DIR), NIAID, NIHinfo:eu-repo/semantics/publishedVersio
Fibrin monomers evaluation during hospitalization for COVID-19 is a predictive marker of in-hospital mortality
BackgroundCoagulopathy is one of the main triggers of severity and worsening of Coronavirus disease 2019 (COVID-19) particularly in critically ill patients. D-dimer has been widely used to detect COVID-19 coagulation disorders and has been correlated with outcomes such as disease severity and in-hospital mortality. Involvement of other fibrin degradation products, particularly fibrin monomers (FM), remains an ongoing question.MethodsWe performed a monocentric study of adult patients with COVID-19, who were admitted either in the medical ward (MW) or in the intensive care unit (ICU) and who had FM measurements performed on them during the first wave of COVID-19 outbreak. We analyzed the positivity of FM levels (FMâ>â7â
”g/mL) to assess the ability of FM monitoring during the first days of hospitalization to predict COVID-19 outcomes.ResultsIn our cohort, 935 FM measurements were performed in 246 patients during their first 9 days of hospitalization. During patient follow-up, the FM levels were higher in patients admitted directly to the ICU than in those admitted to the MW. Moreover, we observed significantly increased levels of FM in patients when the data were stratified for in-hospital mortality. At hospital admission, only 27 (11%) patients displayed a positive value for FM; this subgroup did not differ from other patients in terms of severity (indicated by ICU referral at admission) or in-hospital mortality. When analyzing FM positivity in the first 9 days of hospitalization, we found that 37% of patients had positive FM at least once during hospitalization and these patients had increased in-hospital mortality (pâ=â0.001). Thus, we used non-adjusted KaplanâMeier curves for in-hospital mortality according to FM positivity during hospitalization and we observed a statistically significant difference for in-hospital mortality (hazard ratioâ=â1.48, 95% CI: 1.25â1.76, pâ<â0.001). However, we compared the AUC of FM positivity associated with a ratio of D-dimer >70% and found that this combined receiver operating characteristic (ROC) curve was superior to the FM positivity ROC curve alone.ConclusionMonitoring of FM positivity in hospitalized patients with COVID-19 could be a reliable and helpful tool to predict the worsening condition and mortality of COVID-19
- âŠ